Page 120 - The-5th-MCAIT2021-eProceeding
P. 120

Pengenalpastian faktor-faktor risiko ini perlu dijalankan dengan lebih meluas dan robust supaya hasil dapatan
        kajian ini akan memperoleh pengetahuan baru atau Knowledge Discovery of Database (KDD).


        Penghargaan

               Setinggi-tinggi perhargaan kepada semua pensyarah program Sains Data di Fakulti Teknologi dan Sains
        Maklumat UKM, pakar-pakar dan pegawai perubatan di Jabatan Pembedahan Kardiotorasik IJN, Pengarah,
        Ketua Jabatan dan ahli Unit Pengurusan Data dan Bantuan Biostatistik di Jabatan Penyelidikan Klinikal IJN,
        atas tunjuk ajar dan kerjasama yang diberikan semasa kajian ini dijalankan.


        Rujukan

        Allyn, J., Allou, N., Augustin, P., Philip, I., Martinet, O., Belghiti, M., Provenchere, S., Montravers, P., &
        Ferdynus, C. (2017). A comparison of a machine learning model with EuroSCORE II in predicting mortality
        after elective cardiac surgery: A decision curve analysis. PLoS ONE, 12(1), 1–12.
        https://doi.org/10.1371/journal.pone.0169772
        Benedetto, U., Dimagli, A., Sinha, S., Cocomello, L., Gibbison, B., Caputo, M., Gaunt, T., Lyon, M., Holmes,
        C., & Angelini, G. D. (2020). Machine learning improves mortality risk prediction after cardiac surgery :
        Systematic review and meta-analysis. The Journal of Thoracic and Cardiovascular Surgery.
        https://doi.org/10.1016/j.jtcvs.2020.07.105
        Benedetto, U., Sinha, S., Lyon, M., Dimagli, A., Angelini, G., & Sterne, J. (2020). Can machine learning
        improve mortality prediction following cardiac surgery ? 0(May), 1–7. https://doi.org/10.1093/ejcts/ezaa229
        Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-
        sampling Technique. Journal of Artificial Intelligence Research, 16(2), 321–357.
        Garcia-Valentin, A., Mestres, C. A., Bernabeu, E., Bahamonde, J. A., Martín, I., Rueda, C., Domenech, A.,
        Valencia, J., Fletcher, D., Machado, F., & Amores, J. (2015). Validation and quality measurements for
        EuroSCORE and EuroSCORE II in the Spanish cardiac surgical population: A prospective, multicentre study.
        European Journal of Cardio-Thoracic Surgery, 49(2), 399–405. https://doi.org/10.1093/ejcts/ezv090
        Gummert, J. F., Funkat, A., Osswald, B., Beckmann, A., Schiller, W., Krian, A., Beyersdorf, F., Haverich, A.,
        & Cremer, J. (2009). EuroSCORE overestimates the risk of cardiac surgery: Results from the national registry
        of the german society of thoracic and cardiovascular surgery. Clinical Research in Cardiology, 98(6), 363–
        369. https://doi.org/10.1007/s00392-009-0010-8
        Han, J., Kamber, M., & Pei, J. (2012). Data mining: Data mining concepts and techniques. In Morgan
        Kaufmann, Elsevier.
        Karim, M. N., Reid, C. M., Cochrane, A., Tran, L., Alramadan, M., Hossain, M. N. & Billah, B. 2017.
        Mortality risk prediction models for coronary artery bypass graft surgery: Current scenario and future
        direction. Journal of Cardiovascular Surgery 58(6): 931–942. doi:10.23736/S0021-9509.17.09965-7
        Kartal, El., & Balaban, M. E. (2018). Machine learning techniques in cardiac risk assessment. 26(3), 394–
        401. https://doi.org/10.5606/tgkdc.dergisi.2018.15559
        Mejia, O. A. V., Antunes, M. J., Goncharov, M., Dallan, L. R. P., Veronese, E., Lapenna, G. A., Lisboa, L. A.
        F., Dallan, L. A. O., Pomerantzeff, P. M. A., Brandão, C. M. A., Tarasoutchi, F., Zubelli, J., & Jatene, B.
        (2018). Predictive performance of six mortality risk scores and the development of a novel model in a
        prospective cohort of patients undergoing valve surgery secondary to rheumatic fever. 1–14.
        Musa, A. F., Cheong, X. P., Dillon, J. & Nordin, R. Bin. 2018. Validation of EuroSCORE II in patients
        undergoing coronary artery bypass grafting (CABG) surgery at the National Heart Institute, Kuala Lumpur:






        E- Proceedings of The 5th International Multi-Conference on Artificial Intelligence Technology (MCAIT 2021)   [107]
        Artificial Intelligence in the 4th Industrial Revolution
   115   116   117   118   119   120   121   122   123   124   125