Page 121 - The-5th-MCAIT2021-eProceeding
P. 121

a retrospective review. F1000Research 7(May): 534. doi:10.12688/f1000research.14760.1
        Nashef, S. A. M., Roques, F., Michel, P., Gauducheau, E., Lemeshow, S., & Salamon, R. (1999). European
        system for cardiac operative risk evaluation ( Euro SCORE ). 16, 0–4.
        Nouei, M. T., Kamyad, A. V., Sarzaeem, M. R., & Ghazalbash, S. (2016). Fuzzy risk assessment of mortality
        after coronary surgery using combination of adaptive neuro-fuzzy inference system and K-means clustering.
        Expert Systems, 33(3), 230–238. https://doi.org/10.1111/exsy.12145
        Taleb, I., Dssouli, R., & Serhani, M. A. (2015). Big Data Pre-processing: A Quality Framework. Proceedings
        - 2015 IEEE International Congress on Big Data, BigData Congress 2015, 191–198.
        https://doi.org/10.1109/BigDataCongress.2015.35
        Yap, C. H., Mohajeri, M., Ihle, B. U., Wilson, A. C., Goyal, S., & Yii, M. (2005). Validation of EuroSCORE
        model in an Australian patient population. ANZ Journal of Surgery, 75(7), 508–512.
        https://doi.org/10.1111/j.1445-2197.2005.03440.x
        Zhao, Y., Wong, Z. S. Y., & Tsui, K. L. (2018). A Framework of Rebalancing Imbalanced Healthcare Data
        for Rare Events’ Classification: A Case of Look-Alike Sound-Alike Mix-Up Incident Detection. Journal of
        Healthcare Engineering, 2018(2010), 6275435. https://doi.org/10.1155/2018/6275435





















































        E- Proceedings of The 5th International Multi-Conference on Artificial Intelligence Technology (MCAIT 2021)   [108]
        Artificial Intelligence in the 4th Industrial Revolution
   116   117   118   119   120   121   122   123   124   125   126