Page 170 - The-5th-MCAIT2021-eProceeding
P. 170

on Generative Adversarial Nets. IEEE Access. https://doi.org/10.1109/ACCESS.2020.2979812
        Liang, Y., Chang, S., & Su, C. (2018). A workload-specific memory capacity configuration approach for in-
        memory  data  analytic  platforms.  In  Proceedings  -  15th  IEEE  International  Symposium  on  Parallel  and
        Distributed Processing with Applications and 16th IEEE International Conference on Ubiquitous Computing
        and Communications, ISPA/IUCC 2017. https://doi.org/10.1109/ISPA/IUCC.2017.00080
        Mao, H., Schwarzkopf, M., Venkatakrishnan, S. B., Meng, Z., & Alizadeh, M. (2019). Learning scheduling
        algorithms for data processing clusters. In SIGCOMM 2019 - Proceedings of the 2019 Conference of the ACM
        Special Interest Group on Data Communication. https://doi.org/10.1145/3341302.3342080
        Nguyen,  N.,  Maifi  Hasan  Khan,  M.,  &  Wang,  K.  (2018).  Towards  Automatic  Tuning  of  Apache  Spark
        Configuration.   In   IEEE   International   Conference   on   Cloud   Computing,   CLOUD.
        https://doi.org/10.1109/CLOUD.2018.00059
        Perez, T. B. G., Chen, W., Ji, R., Liu, L., & Zhou, X. (2018). PETS: Bottleneck-aware spark tuning with
        parameter ensembles. In Proceedings - International Conference on Computer Communications and Networks,
        ICCCN. https://doi.org/10.1109/ICCCN.2018.8487324
        Petridis, P., Gounaris, A.,  &  Torres, J. (2017). Spark parameter tuning  via trial-and-error. In Advances in
        Intelligent Systems and Computing. https://doi.org/10.1007/978-3-319-47898-2_24
        Wang, G., Xu, J., & He, B. (2017). A Novel Method for Tuning Configuration Parameters of Spark Based on
        Machine Learning. In Proceedings - 18th IEEE International Conference on High Performance Computing and
        Communications, 14th IEEE International Conference on Smart City and 2nd IEEE International Conference
        on  Data  Science  and  Systems,  HPCC/SmartCity/DSS  2016  (pp.  586–593).  https://doi.org/10.1109/HPCC-
        SmartCity-DSS.2016.0088
        Wang, K., Khan, M. M. H., Nguyen, N., & Gokhale, S. (2019). A Model Driven Approach Towards Improving
        the  Performance  of  Apache  Spark  Applications.  In  Proceedings  -  2019  IEEE  International  Symposium  on
        Performance Analysis of Systems and Software, ISPASS 2019. https://doi.org/10.1109/ISPASS.2019.00036
        Wang, Z., Zhao, Y., Liu, Y., & Lv, C. (2018). A speculative parallel simulated annealing algorithm based on
        Apache Spark. Concurrency Computation . https://doi.org/10.1002/cpe.4429
        Zaharia, M., Chowdury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2010). Spark: Cluster Computing with
        Working Sets. Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing. USENIX
        Association. https://doi.org/10.1017/CBO9781107415324.004
        Zaouk, K., Song, F., Lyu, C., & Diao, Y. (2021). Neural-based Modeling for Performance Tuning of Spark Data
        Analytics. Retrieved from http://arxiv.org/abs/2101.08167































        E- Proceedings of The 5th International Multi-Conference on Artificial Intelligence Technology (MCAIT 2021)   [157]
        Artificial Intelligence in the 4th Industrial Revolution
   165   166   167   168   169   170   171   172   173   174   175