Page 170 - The-5th-MCAIT2021-eProceeding
P. 170
on Generative Adversarial Nets. IEEE Access. https://doi.org/10.1109/ACCESS.2020.2979812
Liang, Y., Chang, S., & Su, C. (2018). A workload-specific memory capacity configuration approach for in-
memory data analytic platforms. In Proceedings - 15th IEEE International Symposium on Parallel and
Distributed Processing with Applications and 16th IEEE International Conference on Ubiquitous Computing
and Communications, ISPA/IUCC 2017. https://doi.org/10.1109/ISPA/IUCC.2017.00080
Mao, H., Schwarzkopf, M., Venkatakrishnan, S. B., Meng, Z., & Alizadeh, M. (2019). Learning scheduling
algorithms for data processing clusters. In SIGCOMM 2019 - Proceedings of the 2019 Conference of the ACM
Special Interest Group on Data Communication. https://doi.org/10.1145/3341302.3342080
Nguyen, N., Maifi Hasan Khan, M., & Wang, K. (2018). Towards Automatic Tuning of Apache Spark
Configuration. In IEEE International Conference on Cloud Computing, CLOUD.
https://doi.org/10.1109/CLOUD.2018.00059
Perez, T. B. G., Chen, W., Ji, R., Liu, L., & Zhou, X. (2018). PETS: Bottleneck-aware spark tuning with
parameter ensembles. In Proceedings - International Conference on Computer Communications and Networks,
ICCCN. https://doi.org/10.1109/ICCCN.2018.8487324
Petridis, P., Gounaris, A., & Torres, J. (2017). Spark parameter tuning via trial-and-error. In Advances in
Intelligent Systems and Computing. https://doi.org/10.1007/978-3-319-47898-2_24
Wang, G., Xu, J., & He, B. (2017). A Novel Method for Tuning Configuration Parameters of Spark Based on
Machine Learning. In Proceedings - 18th IEEE International Conference on High Performance Computing and
Communications, 14th IEEE International Conference on Smart City and 2nd IEEE International Conference
on Data Science and Systems, HPCC/SmartCity/DSS 2016 (pp. 586–593). https://doi.org/10.1109/HPCC-
SmartCity-DSS.2016.0088
Wang, K., Khan, M. M. H., Nguyen, N., & Gokhale, S. (2019). A Model Driven Approach Towards Improving
the Performance of Apache Spark Applications. In Proceedings - 2019 IEEE International Symposium on
Performance Analysis of Systems and Software, ISPASS 2019. https://doi.org/10.1109/ISPASS.2019.00036
Wang, Z., Zhao, Y., Liu, Y., & Lv, C. (2018). A speculative parallel simulated annealing algorithm based on
Apache Spark. Concurrency Computation . https://doi.org/10.1002/cpe.4429
Zaharia, M., Chowdury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2010). Spark: Cluster Computing with
Working Sets. Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing. USENIX
Association. https://doi.org/10.1017/CBO9781107415324.004
Zaouk, K., Song, F., Lyu, C., & Diao, Y. (2021). Neural-based Modeling for Performance Tuning of Spark Data
Analytics. Retrieved from http://arxiv.org/abs/2101.08167
E- Proceedings of The 5th International Multi-Conference on Artificial Intelligence Technology (MCAIT 2021) [157]
Artificial Intelligence in the 4th Industrial Revolution