Page 200 - The-5th-MCAIT2021-eProceeding
P. 200
Further work contains detailed and thorough experiments in analyzing the performance of PCA variant
initialized network. Moreover, future work also comprises of experimenting and performing hybridization of
PCA variant filters with Gabor filters.
Acknowledgements
We would like to thank the Ministry of Education who awarded us a FRGS/1/2019/ICT02/UKM/02/8 research
grant entitled "Ensemble of Convolutional Neural Networks Using Multiple Heterogeneous Filter Models for
Image Classification".
References
Alberti, M., Seuret, M., Pondenkandath, V., Ingold, R., & Liwicki, M. (2017). Historical document image
segmentation with LDA-initialized deep neural networks. In Proceedings of the 4th International Workshop on
Historical Document Imaging and Processing (pp. 95-100).
Brause, R., Arlt, B., & Tratar, E. (1999). Project semacode: A scale-invariant object recognition system for
content-based queries in images databases.
Chan, T. H., Jia, K., Gao, S., Lu, J., Zeng, Z., & Ma, Y. (2015). PCANet: A simple deep learning baseline for
image classification?. IEEE transactions on image processing, 24(12), 5017-5032.
Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In
Proceedings of the thirteenth international conference on artificial intelligence and statistics (pp. 249-256).
JMLR Workshop and Conference Proceedings.
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance
on imagenet classification. In Proceedings of the IEEE international conference on computer vision (pp. 1026-
1034).
Cohen, J. P., Morrison, P., Dao, L., Roth, K., Duong, T. Q., & Ghassemi, M. (2020). Covid-19 image data
collection: Prospective predictions are the future. arXiv preprint arXiv:2006.11988.
Koturwar, S., & Merchant, S. (2017). Weight initialization of deep neural networks (dnns) using data statistics.
arXiv preprint arXiv:1710.10570.
Li, H., Krček, M., & Perin, G. (2020). A Comparison of Weight Initializers in Deep Learning-Based Side-
Channel Analysis. In International Conference on Applied Cryptography and Network Security (pp. 126-143).
Springer, Cham.
Lu, L., Shin, Y., Su, Y., & Karniadakis, G. E. (2019). Dying relu and initialization: Theory and numerical
examples. arXiv preprint arXiv:1903.06733.
Luan, S., Chen, C., Zhang, B., Han, J., & Liu, J. (2018). Gabor convolutional networks. IEEE Transactions on
Image Processing, 27(9), 4357-4366.
Ren, X. D., Guo, H. N., He, G. C., Xu, X., Di, C., & Li, S. H. (2016). Convolutional neural network based on
principal component analysis initialization for image classification. In 2016 IEEE first international conference
on data science in cyberspace (DSC) (pp. 329-334). IEEE.
Soon, F. C., Khaw, H. Y., Chuah, J. H., & Kanesan, J. (2020). Semisupervised PCA Convolutional Network
for Vehicle Type Classification. IEEE Transactions on Vehicular Technology, 69(8), 8267-8277.
Sun, R. Y. (2020). Optimization for deep learning: An overview. Journal of the Operations Research Society of
China, 8(2), 249-294.
Wang, Y., Rong, Y., Pan, H., Liu, K., Hu, Y., Wu, F., ... & Chen, J. (2020). PCA Based Kernel Initialization
for Convolutional Neural Networks. In International Conference on Data Mining and Big Data (pp. 71-82).
Springer, Singapore.
E- Proceedings of The 5th International Multi-Conference on Artificial Intelligence Technology (MCAIT 2021) [187]
Artificial Intelligence in the 4th Industrial Revolution