Page 67 - The-5th-MCAIT2021-eProceeding
P. 67

References
        Ajibade, S. S. M., Ahmad, N. B., & Shamsuddin, S. M. (2020). A data mining approach to predict academic
        performance of students using ensemble techniques. Advances in Intelligent Systems and Computing, 940,
        749–760. https://doi.org/10.1007/978-3-030-16657-1_70
        Al-Hagery, M. A., Alzaid, M. A., Alharbi, T. S., & Alhanaya, M. A. (2020). Data Mining Methods for
        Detecting the Most Significant Factors Affecting Students’ Performance. International Journal of Information
        Technology and Computer Science, 12(5), 1–13. https://doi.org/10.5815/ijitcs.2020.05.01
        Avella, J. T., Kebritchi, M., Nunn, S. G., & Kanai, T. (2016). Learning analytics methods, benefits, and
        challenges in higher education: A systematic literature review. Journal of Asynchronous Learning Network,
        20(2). https://doi.org/10.24059/olj.v20i2.790
        Bhagavan, K. S., Thangakumar, J., & Subramanian, D. V. (2020). Predictive analysis of student academic
        performance and employability chances using HLVQ algorithm. Journal of Ambient Intelligence and
        Humanized Computing, 0123456789. https://doi.org/10.1007/s12652-019-01674-8
        Bhardwaj, B. K. (2011). Data Mining: A prediction for performance improvement using classification.
        (IJCSIS) International Journal of Computer Science and Information Security, 9(4).
        Casuat, C. D., & Festijo, E. D. (2020). Identifying the Most Predictive Attributes Among Employability
        Signals of Undergraduate Students. 2020 16th IEEE International Colloquium on Signal Processing & Its
        Applications (CSPA), February, 203–206. https://doi.org/10.1109/CSPA48992.2020.9068681
        Hellas, A., Liao, S. N., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A.,
        Leinonen, J., & Messom, C. (2018). Predicting academic performance: a systematic literature review.
        Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer
        Science Education - ITiCSE 2018 Companion, 175–199. https://doi.org/10.1145/3293881.3295783
        Hussain, M., Zhu, W., Zhang, W., & Abidi, S. M. R. (2018). Student Engagement Predictions in an e-
        Learning System and Their Impact on Student Course Assessment Scores. Computational Intelligence and
        Neuroscience, 2018, 1–21. https://doi.org/10.1155/2018/6347186
        Hutagaol, N., & Suharjito, S. (2019). Predictive Modelling of Student Dropout Using Ensemble Classifier
        Method in Higher Education. Advances in Science, Technology and Engineering Systems Journal, 4(4), 206–
        211. https://doi.org/10.25046/aj040425
        Mayra, A., & Mauricio, D. (2018). Factors to predict dropout at the universities: A case of study in Ecuador.
        2018 IEEE Global Engineering Education Conference (EDUCON), 1238–1242.
        https://doi.org/10.1109/EDUCON.2018.8363371
        Osmanbegović, E., & Suljić, M. (2012). DATA MINING APPROACH FOR PREDICTING STUDENT
        PERFORMANCE. Economic Review: Journal of Economics and Business, 10(1), 3–12.
        http://hdl.handle.net/10419/193806
        Zulkifli, F., Mohamed, Z., & Azmee, N. A. (2019). Systematic Research on Predictive Models on Students’
        Academic Performance in Higher Education. International Journal of Recent Technology and Engineering,
        8(2S3), 357–363. https://doi.org/10.35940/ijrte.B1061.0782S319

























        E- Proceedings of The 5th International Multi-Conference on Artificial Intelligence Technology (MCAIT 2021)   [54]
        Artificial Intelligence in the 4th Industrial Revolution
   62   63   64   65   66   67   68   69   70   71   72