Page 93 - The-5th-MCAIT2021-eProceeding
P. 93
References
Acharya, U. R., Fujita, H., Lih, O. S., Adam, M., Tan, J. H., & Chua, C. K. (2017). Automated detection of
coronary artery disease using different durations of ECG segments with convolutional neural network.
Knowledge-Based Systems, 132, 62–71-62–71.
Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on Explainable Artificial Intelligence
(XAI). IEEE Access, 6, 52138–52160-52138–52160.
Ahmad, A. S., Hassan, M. Y., Abdullah, M. P., Rahman, H. A., Hussin, F., Abdullah, H., & Saidur, R. (2014).
A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renewable
and Sustainable Energy Reviews, 33, 102–109-102–109.
Al-Zaiti, S., Besomi, L., Bouzid, Z., Faramand, Z., Frisch, S., Martin-Gill, C., . . . Sejdić, E. (2020). Machine
learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram.
Nature communications, 11(1), 1–10-11–10.
Alizadehsani, R., Abdar, M., Roshanzamir, M., Khosravi, A., Kebria, P. M., Khozeimeh, F., . . . Acharya, U. R.
(2019). Machine learning-based coronary artery disease diagnosis: A comprehensive review. Computers in
Biology and Medicine, 111, 103346-103346.
Alizadehsani, R., Hosseini, M. J., Khosravi, A., Khozeimeh, F., Roshanzamir, M., Sarrafzadegan, N., &
Nahavandi, S. (2018). Non-invasive detection of coronary artery disease in high-risk patients based on the
stenosis prediction of separate coronary arteries. Computer Methods and Programs in Biomedicine, 162, 119–
127-119–127.
Alizadehsani, R., Roshanzamir, M., Abdar, M., Beykikhoshk, A., Khosravi, A., Panahiazar, M., . . .
Sarrafzadegan, N. (2019). A database for using machine learning and data mining techniques for coronary artery
disease diagnosis. Scientific data, 6(1), 1–13-11–13.
Andersen, R. S., Peimankar, A., & Puthusserypady, S. (2019). A deep learning approach for real-time detection
of atrial fibrillation. Expert Systems with Applications, 115, 465–473-465–473.
Bisong, E. (2019). Building Machine Learning and Deep Learning Models on Google Cloud Platform:
Springer.
Butun, E., Yildirim, O., Talo, M., Tan, R.-S., & Acharya, U. R. (2020). 1D-CADCapsNet: One dimensional
deep capsule networks for coronary artery disease detection using ECG signals. Physica Medica, 70,
39–48-39–48.
Guglin, M. E., & Thatai, D. (2006). Common errors in computer electrocardiogram interpretation. International
journal of cardiology, 106(2), 232–237-232–237.
Holst, H., Ohlsson, M., Peterson, C., & Edenbrandt, L. (1999). A confident decision support system for
interpreting electrocardiograms. Clinical Physiology, 19(5), 410–418-410–418.
Hong, S., Zhou, Y., Shang, J., Xiao, C., & Sun, J. (2020). Opportunities and challenges of deep learning methods
for electrocardiogram data: A systematic review. Computers in Biology and Medicine, 103801-103801.
Kim, H. Y., & Choi, J.-H. (2015). TCTAP A-084 Lesion-Specific Myocardial Mass: A New Index for Diagnosis
and Treatment of Coronary Artery Disease. Journal of the American College of Cardiology, 65(17 Supplement),
S43–S44-S43–S44.
Kim, H. Y., Kim, E. k., Kim, S. M., Song, Y. B., Hahn, J.-Y., Choi, S.-H., . . . others. (2015). Fractional
myocardial mass: a new index for diagnosis and treatment of coronary artery disease. Journal of the American
College of Cardiology, 65(10S), A1269–A1269-A1269–A1269.
Kiranyaz, S., Ince, T., & Gabbouj, M. (2015). Real-time patient-specific ECG classification by 1-D
convolutional neural networks. IEEE Transactions on Biomedical Engineering, 63(3), 664–675-664– 675.
Kumar, M., Pachori, R. B., & Acharya, U. R. (2017). Characterization of coronary artery disease using flexible
analytic wavelet transform applied on ECG signals. Biomedical signal processing and control, 31, 301–308-
301–308.
Li, R., Bhanu, B., & Krawiec, K. (2007). Hybrid coevolutionary algorithms vs. SVM algorithms. Paper presented
at the Proceedings of the 9th annual conference on Genetic and evolutionary computation.
Mendis, S., Puska, P., Norrving, B., Organization, W. H., & others. (2011). Global atlas on cardiovascular
disease prevention and control: World Health Organization.
E- Proceedings of The 5th International Multi-Conference on Artificial Intelligence Technology (MCAIT 2021) [80]
Artificial Intelligence in the 4th Industrial Revolution