Page 93 - The-5th-MCAIT2021-eProceeding
P. 93

References

        Acharya, U. R., Fujita, H., Lih, O. S., Adam, M., Tan, J. H., & Chua, C. K. (2017). Automated detection of
        coronary  artery  disease  using  different  durations  of  ECG  segments  with  convolutional  neural  network.
        Knowledge-Based Systems, 132, 62–71-62–71.
        Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on Explainable Artificial Intelligence
        (XAI). IEEE Access, 6, 52138–52160-52138–52160.
        Ahmad, A. S., Hassan, M. Y., Abdullah, M. P., Rahman, H. A., Hussin, F., Abdullah, H., & Saidur, R. (2014).
        A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renewable
        and Sustainable Energy Reviews, 33, 102–109-102–109.
        Al-Zaiti, S., Besomi, L., Bouzid, Z., Faramand, Z., Frisch, S., Martin-Gill, C., . . . Sejdić, E. (2020). Machine
        learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram.
        Nature communications, 11(1), 1–10-11–10.
        Alizadehsani, R., Abdar, M., Roshanzamir, M., Khosravi, A., Kebria, P. M., Khozeimeh, F., . . . Acharya, U. R.
        (2019). Machine learning-based coronary artery disease diagnosis: A comprehensive review.  Computers in
        Biology and Medicine, 111, 103346-103346.
        Alizadehsani,  R.,  Hosseini,  M.  J.,  Khosravi,  A.,  Khozeimeh,  F.,  Roshanzamir,  M.,  Sarrafzadegan,  N.,  &
        Nahavandi, S. (2018). Non-invasive detection of coronary artery disease in high-risk patients based on the
        stenosis prediction of separate coronary arteries. Computer Methods and Programs in Biomedicine, 162, 119–
        127-119–127.
        Alizadehsani,  R.,  Roshanzamir,  M.,  Abdar,  M.,  Beykikhoshk,  A.,  Khosravi,  A.,  Panahiazar,  M.,  .  .  .
        Sarrafzadegan, N. (2019). A database for using machine learning and data mining techniques for coronary artery
        disease diagnosis. Scientific data, 6(1), 1–13-11–13.
        Andersen, R. S., Peimankar, A., & Puthusserypady, S. (2019). A deep learning approach for real-time detection
        of atrial fibrillation. Expert Systems with Applications, 115, 465–473-465–473.
        Bisong, E. (2019). Building Machine Learning and Deep Learning Models on Google Cloud Platform:
        Springer.
        Butun, E., Yildirim, O., Talo, M., Tan, R.-S., & Acharya, U. R. (2020). 1D-CADCapsNet: One dimensional
        deep capsule networks for coronary artery disease detection using ECG signals. Physica Medica, 70,
        39–48-39–48.
        Guglin, M. E., & Thatai, D. (2006). Common errors in computer electrocardiogram interpretation. International
        journal of cardiology, 106(2), 232–237-232–237.
        Holst,  H.,  Ohlsson,  M.,  Peterson,  C.,  &  Edenbrandt,  L.  (1999).  A  confident  decision  support  system  for
        interpreting electrocardiograms. Clinical Physiology, 19(5), 410–418-410–418.
        Hong, S., Zhou, Y., Shang, J., Xiao, C., & Sun, J. (2020). Opportunities and challenges of deep learning methods
        for electrocardiogram data: A systematic review. Computers in Biology and Medicine, 103801-103801.
        Kim, H. Y., & Choi, J.-H. (2015). TCTAP A-084 Lesion-Specific Myocardial Mass: A New Index for Diagnosis
        and Treatment of Coronary Artery Disease. Journal of the American College of Cardiology, 65(17 Supplement),
        S43–S44-S43–S44.
        Kim, H. Y., Kim, E. k., Kim, S. M., Song, Y. B., Hahn, J.-Y., Choi, S.-H., . . . others. (2015). Fractional
        myocardial mass: a new index for diagnosis and treatment of coronary artery disease. Journal of the American
        College of Cardiology, 65(10S), A1269–A1269-A1269–A1269.
        Kiranyaz,  S.,  Ince,  T.,  &  Gabbouj,  M.  (2015).  Real-time  patient-specific  ECG  classification  by  1-D
        convolutional neural networks. IEEE Transactions on Biomedical Engineering, 63(3), 664–675-664– 675.
        Kumar, M., Pachori, R. B., & Acharya, U. R. (2017). Characterization of coronary artery disease using flexible
        analytic wavelet transform applied on ECG signals. Biomedical signal processing and control, 31, 301–308-
        301–308.
        Li, R., Bhanu, B., & Krawiec, K. (2007). Hybrid coevolutionary algorithms vs. SVM algorithms. Paper presented
        at the Proceedings of the 9th annual conference on Genetic and evolutionary computation.
        Mendis, S., Puska, P., Norrving, B., Organization, W. H., & others. (2011).  Global atlas on cardiovascular
        disease prevention and control: World Health Organization.


        E- Proceedings of The 5th International Multi-Conference on Artificial Intelligence Technology (MCAIT 2021)   [80]
        Artificial Intelligence in the 4th Industrial Revolution
   88   89   90   91   92   93   94   95   96   97   98