Page 94 - The-5th-MCAIT2021-eProceeding
P. 94
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., . . . others. (2015).
Humanlevel control through deep reinforcement learning. nature, 518(7540), 529–533-529–533.
Nazlı, B., Gültepe, Y., & Altural, H. Classification of Coronary Artery Disease Using Different Machine
Learning Algorithms.
Organization, W. H., & others. (2014). Global status report on noncommunicable diseases 2014: World Health
Organization.
Sahoo, S., Dash, M., Behera, S., & Sabut, S. J. I. (2020). Machine learning approach to detect cardiac
arrhythmias in ecg signals: a survey.
Schläpfer, J., & Wellens, H. J. (2017). Computer-interpreted electrocardiograms: benefits and limitations.
Journal of the American College of Cardiology, 70(9), 1183–1192-1183–1192.
Shah, A. P., & Rubin, S. A. (2007). Errors in the computerized electrocardiogram interpretation of cardiac
rhythm. Journal of electrocardiology, 40(5), 385–390-385–390.
Sharma, M., & Acharya, U. R. (2019). A new method to identify coronary artery disease with ECG signals and
time-Frequency concentrated antisymmetric biorthogonal wavelet filter bank. Pattern Recognition Letters, 125,
235–240-235–240.
Strodthoff, N., Wagner, P., Schaeffter, T., & Samek, W. (2020). Deep Learning for ECG Analysis: Benchmarks
and Insights from PTB-XL. arXiv preprint arXiv:2004.13701.
Tan, J. H., Hagiwara, Y., Pang, W., Lim, I., Oh, S. L., Adam, M., . . . Acharya, U. R. (2018). Application of
stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals.
Computers in Biology and Medicine, 94, 19–26-19–26.
Tsipouras, M. G., Exarchos, T. P., Fotiadis, D. I., Kotsia, A. P., Vakalis, K. V., Naka, K. K., & Michalis, L. K.
(2008). Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling. IEEE
Transactions on Information Technology in Biomedicine, 12(4), 447–458-447–458.
Zipes, D. P., Libby, P., Bonow, R. O., Mann, D. L., & Tomaselli, G. F. (2018). Braunwald's Heart Disease
EBook: A Textbook of Cardiovascular Medicine: Elsevier Health Sciences.
Zubair, M., Kim, J., & Yoon, C. (2016 2016). An automated ECG beat classification system using convolutional
neural networks. Paper presented at the 2016 6th international conference on IT convergence and security
(ICITCS).
E- Proceedings of The 5th International Multi-Conference on Artificial Intelligence Technology (MCAIT 2021) [81]
Artificial Intelligence in the 4th Industrial Revolution