
Least Squares Data Fitting

Mohd Harith Akmal Zulfaizal Fadillah, Bahari Idrus,
Mohammad Khatim Hasan

Centre for Artificial Intelligence (CAIT),
Faculty of Information Science & Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor

Abstract

The least squares method is an approach for determining the best fit for a series of
data points by minimizing the sum of the squared differences between the actual values
and the approximated values from the plotted curve. The least squares method is able to
approximate functions such as linear, quadratic and cubic functions as well as functions
of higher degree and complexity. This report will model, fit and plot the curves for linear
least squares of linear, quadratic and cubic models, multiple linear regression (MLR),
least squares function approximation and nonlinear least squares using Python.

1 Introduction

The least squares method is a statistical model commonly used in regression analysis in an
attempt to estimate the relationships between the dependent variable and one or more in-
dependent variables. It is used to approximate the solutions to a system of equations that
minimize the sum of squared residuals which is essentially the summation of the squared dif-
ference between the y-values from the data set and the approximated model [1].

Its’ applications concern mainly of regression, predictions and estimations in a wide range
of fields such as finance and economy, image processing, medicine, agriculture among others.
The least squares approximation is applicable whenever the dependent variable is assumed
to have a causal relationship with the independent variables. Furthermore, the least squares
solutions can be easily obtained from matrix linear algebra which will be discussed in the next
section. However, since it is inherent in the method to minimize the sum of squared residuals,
the existence of outliers can affect the solutions and line of best fit.

In the following sections, we are going to study the method of least squares for some of the
general models such as linear, quadratic and cubic. We are also going to look at multiple linear
regression (MLR), least squares function approximation and nonlinear least squares. After
studying the mathematical foundations of those methods, we are going to model, fit and plot
the approximations to relevant applicable data sets using Python and observe the difference in
the different ways and modules used in fitting the data.

2 The Method of Least Squares

2.1 Linear Least Squares & Regression

A set of data points consisting of independent and dependent variables, (xi, yi) is plotted. A
model function of some sort is chosen to best fit the data set by adjusting the parameters avail-
able. For example, we can choose the simplest linear model, y = a0 + a1x to be approximated

1

LP-CAIT-FTSM-2021-004

Cop
yri

gh
t@

FTSM

to the plotted data set. The fit of the model chosen can be measured by minimizing the sum of
its squared residuals which is the difference between the actual data points and the prediction
from the fit approximated by the model [1],

F (ai) =
n∑
i=1

(yi − (a0 + a1xi))
2

To minimize the squared residuals, the partial derivatives of F (a, b) is set to zero,

∂F (ai)

∂a2
= −2

n∑
i=1

(yi − (a0 + a1xi)) = 0

∂F (ai)

∂a1
= −2

n∑
i=1

(yi − (a0 + a1xi))xi = 0

which can be simplified to a similar system of linear equations form, Ax = b,

a1

n∑
i=1

xi + na0 =
n∑
i=1

yi

a1

n∑
i=1

x2i +
n∑
i=1

xia0 =
n∑
i=1

xiyi

or in its matrix form, [
n

∑
xi∑

xi
∑
x2i

] [
a0
a1

]
=

[∑
yi∑
yixi

]
Solving for x = A−1b, the values for a0 and a0 can be obtained.

This method to obtain the best fit can also work for any polynomial models by simply
changing the model used in the squared residuals. Consider a quadratic model, y = a0 + a1x+
a2x

2,

F (a) =
n∑
i=1

(yi − (a0 + a1x+ a2x
2))2

By minimizing the squared residuals, a system of linear equations can be obtained to be solved
for the parameters a0, a1, a2. n

∑
xi

∑
x2i∑

xi
∑
x2i

∑
x3i∑

x2i
∑
x3i

∑
x4i

a0a1
a2

 =

 ∑ yi∑
yixi∑
yix

2
i


From the obtained system of equations from both linear and quadratic models, it is observed

that there is a pattern to the matrices A and b. The system of equations to measure the
parameters can be generalized to,

n
∑
xi

∑
x2i . . .

∑
xmi∑

xi
∑
x2i

∑
x3i . . .

∑
xm+1
i

...
...

...
. . .

...∑
xmi

∑
xm+1
i

∑
xm+2
i . . .

∑
xm+m
i



a0
a1
...
am

 =


∑
yix

0
i∑

yix
1
i

...∑
yix

m
i

 (1)

It is also possible to measure the paramater from its system of equations, Ax = b by
plugging in the values of x and y into the chosen model such that,

Eg: Cubic model y = a0 + a1x+ a2x
2 + a3x

3

2

LP-CAIT-FTSM-2021-004

Cop
yri

gh
t@

FTSM


1 x1 x21 x31
1 x2 x22 x32
...

...
...

...
1 xm x2m x3m



a0
a1
a2
a3

 =


y1
y2
...
ym

 (2)

where m is the number of rows or the number of equations available from the dataset. Since
the number of rows is greater than the number of columns, it often happens that there is no
exact solution for Ax = b as b is not in the column space of A. Another vector is chosen such
that e = b − p, which is the distance between b and the chosen vector is minimized while e
is perpendicular to the column space. The best possible solution happens to be the projection
of b on C(A) which is p = Ax̂ where x̂ is the least squares solution [2]. By minimizing the
squared error, e,

F (x) = ‖e‖2 = eTe

= (b− Ax)T (b− x)

= bTb− 2bTAxT + ATAx

and setting the gradient to zero,

∂F (x)

∂x
= −2ATb + 2ATAx = 0

ATAx = ATb (3)

the least squares solution can be solved for x̂ = (ATA)−1ATb where ATA is a much more dense
invertible square matrix with nonzero entities where the dot product between the Vandermonde
matrix A and its transpose AT will result in the generalized matrix A from Equation 2,

ATA =


1 1 1 1
x1 x2 x3 x4
x21 x22 x23 x24
x31 x32 x33 x34




1 x1 x21 x31
1 x2 x22 x32
1 x3 x23 x33
1 x4 x24 x34

 =


n

∑
xi

∑
x2i

∑
x3i∑

xi
∑
x2i

∑
x3i

∑
x4i∑

x2i
∑
x3i

∑
x4i

∑
x5i∑

x3i
∑
x4i

∑
x5i

∑
x6i


2.2 Multiple Linear Regression (MLR)

Previously, we have looked into linear least squares regression consisting of only singular in-
dependent variable. MLR concerns itself in obtaining a best fit for a dataset with multiple
independent variables, (xi1, xi2, ...) with respect to the dependent variable, yi given that the
independent variables are not too highly correlated with each other.

A system of equations consisting of multiple independent variables can be solved by using
Equation 3. Consider three independent variables of the following function,

y = β0 + β1x1 + β2x
2
2 + β3x1x2

The system of equations, Ax = b given that A is simply the Vandermonde matrix from Equation
2 [3], 

1 x11 x212 x11x12
1 x21 x222 x21x22
...

...
...

...
1 xm1 x2m2 xm1xm2



β0
β1
β2
β3

 =


y1
y2
...
ym


where m is the number of equations and the parameters βi of x can be solved for x =
(ATA)−1ATb.

3

LP-CAIT-FTSM-2021-004

Cop
yri

gh
t@

FTSM

3 Least Squares Function Approximation

Given a function, f(x), it can be approximated to a weighted sum of functions usually chosen to
be of orthogonal functions, φ(x) where the inner product of orthogonal functions are 〈φi, φj〉 = 0
when i 6= j due to its orthogonality properties.

f(x) ≈
n∑
i=1

ciφi(x) = c1φ1(x) + c2φ2(x) + ...+ cnφn(x) = f̂(x)

The approximation function, f̂(x) can best fit the original function by determining the ci

coefficients such that ‖f − f̂‖
2

is minimum.∥∥∥f − f̂∥∥∥2 =

∫ b

a

(f(x)−
n∑
i=1

ciφi(x))2 dx

There are generally two ways of minimizing the squared error. Firstly, by using calculus and
taking the derivatives of the squared residuals with respect to ci to get the minimum points.
However, we can take advantage of the orthogonality of φi(x) for the minimization via linear
algebra where [1], ∥∥∥f − f̂∥∥∥2 = 〈f − f̂ , f − f̂〉

= 〈f, f〉 − 2〈f, f̂〉+ 〈f̂ , f̂〉

〈f̂ , f̂〉 = 〈
n∑
i=1

ciφi,
n∑
j=1

φj〉

= c21〈φ1, φ1〉+ c22〈φ2, φ2〉+ ...+ c2n〈φn, φn〉

=
n∑
i=1

c2i ‖φi‖
2

〈f, f̂〉 = 〈f,
n∑
i=1

φi〉

= 〈f, c1φ1 + c2φ2 + ...+ cnφn〉
= c1〈f, φ1〉+ c2〈f, φ2〉+ ...+ cn〈f, φn〉

=
n∑
i=1

ci〈f, φi〉

The critical value of the squared error, E(ci) can then be computed for a particular coefficient,
ck, ∥∥∥f − f̂∥∥∥2 = ‖f‖2 − 2

n∑
i=1

ci〈f, φi〉+
n∑
i=1

c2i 〈φi, φi〉 = E(ci)

∂E

∂ck
=

∂

∂ck
‖f‖2 − 2

n∑
i=1

∂

∂ck
ci〈f, φi〉+

n∑
i=1

∂

∂ck
c2i 〈φi, φi〉

= −2〈f, φk〉+ 2ck〈φk, φk〉 = 0

ck =
〈f, φk〉
〈φk, φk〉

(4)

Thus, the best approximation can be calculated for any given f(x) with any set of orthogonal
functions as [1],

f̂(x) =
n∑
i=1

〈f, φi〉
〈φi, φi〉

φi(x) (5)

4

LP-CAIT-FTSM-2021-004

Cop
yri

gh
t@

FTSM

4 Nonlinear Least Squares

A function, f(x) is considered nonlinear when it cannot be expressed as the linear combination
of its coefficients such it is nonlinear in its coefficients. A function such as y = beax is a nonlinear
equation that can be linearized by taking the natural logarithm of both sides of the equation,
ln y = ln b+ ax and is able to be approximated by ordinary least squares.

When a model chosen to be approximated to a set of data is a nonlinear function f(x, β)
that cannot be linearized, the ordinary least squares analysis does not hold true for the model.
The Gauss-Netwon approach is used for a nonlinear least squares analysis where the model is
approximated by a linear function, commonly the first-order Taylor series [4],

ri = yi − f(x, β)

ri ≈ yi − f(xi, βt)−∇βf(xi, βt)[β − βt]

we can redefine the Taylor’s approximation to a linear function by,

ỹi = yi − f(xi, βt) x̃i = ∇βf(xi, βt) β̃ = β − βt

ri ≈ ỹi − x̃Ti β̃ = ỹi − Jβ̃

J =


∂f1
∂β1

. . . ∂f1
∂βp

...
. . .

...
∂fn
∂β1

. . . ∂fn
∂βp


where x̃i = J is the Jacobian matrix. Now that it is in the form of an ordinary least square with

the solution x = (ATA)−1ATb, we can apply this solution to ‖ri‖2 =
∥∥∥ỹ − Jβ̃∥∥∥2 and substitute

back ỹ and β̃.
β̃ = (JTt Jt)

−1JTt ỹ = (JTt Jt)
−1JTt rt

βt+1 = βt + (JTt Jt)
−1JTt rt (6)

The solutions for the regression coefficients are obtained and refined by successive approxima-
tions until the desired tolerance is achieved.

5 Modelling and Fitting

In this section, we are going to attempt to do least squares regression analysis on several data
sets for linear, quadratic and cubic functions. In general, there are several ways to obtain the
desired coefficients and best fit of the model. We are mainly going to compute and plot these
parameters by using,

i the generalized matrix from Equation 1,

ii the Vandermonde matrix from Equation 2,

iii built-in SciPy modules for least squares and curve fitting.

We are also going to model, fit and plot the approximated relevant functions to series of
data points for multiple linear regression (MLR), least squares function approximation and
nonlinear least squares.

5

LP-CAIT-FTSM-2021-004

Cop
yri

gh
t@

FTSM

5.1 Linear model

A simple linear function, y = a0 + a1x is used to model a linear best fit for a set of data, x and
y. The data set for this example is generated by using NumPy’s random module to give the
data some sort of a random noise.

A function is needed to sort the data set into the generalized matrix from Equation 1 before
solving the system of equations. To obtain the generalized matrix, the arrays of x and y are
passed through a function that sorts the matrix elements iteratively.

1 def get_gmatrices(order , x, y, n):

2 z = order + 1

3 A = np.empty(shape =(z, z))

4 for i in range(z):

5 itr = 0

6 for j in range(z):

7 if i == 0 and j == 0:

8 A[i, j] = n

9 itr += 1

10 else:

11 A[i, j] = sum(x ** (i + itr))

12 itr += 1

13 b = np.empty(shape =(z, 1))

14 b[0, 0] = sum(y)

15 for k in range(1, z):

16 b[k, 0] = sum(y * (x ** k))

17 return A, b

The function above will give output to the matrix A and b which can be solved for x = A−1b
to obtain the coefficients of the linear model, a0 and a1, using np.linalg.solve(A, b). The linear
best fit is plotted with the coefficients measured in Figure 1. The sum of squared residuals as
per previous section is given by

∑
(y − ŷ)2 where ŷ is the approximated y values.

Figure 1: Linear model

6

LP-CAIT-FTSM-2021-004

Cop
yri

gh
t@

FTSM

5.2 Quadratic model

In addition to the generalized matrix, the coefficients for the best fit can also be obtained
by using the Vandermonde matrix. For the quadratic model, the simplest quadratic function
y = a0 + a1x + a2x

2 is used. The data set for this example is generated via NumPy’s random
function. Sorting the system of equations in the form of Ax = b, A is a 100× 3 matrix where
m > n thus rendering solving the system impossible since there are no real solutions.

From the derivation of Equation 3, it is observed that by applying a dot product of the
transpose AT to matrix A, a much denser square matrix is obtained which will make solving
the system possible. Now the system of equations can be represented as,

ATAx = ATb

A function that takes the values of x and y is constructed such that it sorts the former
into a Vandermonde matrix, A and the latter into a column matrix of y values for all the data
points.

1 def get_lamatrices(order , x, y, n):

2 power = list(range(order + 1))

3 M = x[:, np.newaxis] ** power # [1 x x^2 x^3 ...] form

4 k = y.reshape(n, 1)

5

6 return M, k

The function np.newaxis is extremely useful in constructing the Vandermonde matrix as it
adds a new dimension to the array and is able to transform the elements added as seen above
where every new column or dimension, the elements of said column is raised to a power.The
system of equations can be solved for, in this case, x = (MTM)−1MTk, where the coefficients
are obtained and the quadratic best fit is plotted as seen in Figure 2.

1 c = np.linalg.inv(M.T@M)@M.T@k

Figure 2: Quadratic model

7

LP-CAIT-FTSM-2021-004

Cop
yri

gh
t@

FTSM

5.3 Cubic model

As we have seen both ways of solving the system of equations to measure the coefficients of
the selected model through the generalized and Vandermonde matrices, it is only apt for us to
utilize the already existing algorithms built into the NumPy and SciPy module.

Figure 3: Cubic model using scipy.linalg.lstsq

The first method is np.linalg.lstsq and scipy.linalg.lstsq where it takes the Vandermonde
matrix A and b as its argument and yields the least squares solutions, its sum of squared
residuals, rank of matrix A and singular values of A [5].

1 from scipy.linalg import lstsq

2

3 z, res , rank , s = lstsq(M, k)

4 print(’Coefficients:’, z.flatten ())

5 print(’Residuals ’, res)

The second method, scipy.optimize.curve_fit is advanced such that it uses non-linear least
squares to fit a desired function to data [5, 6]. The method takes the desired function or model
to be approximated to and the arrays of values for the data set, x and y with some other
optional arguments such as initial guesses, uncertainty for y and bounds. The method yields
the optimal values of the coefficients for the model that minimized the squared residuals and
the estimated covariance for the coefficients.

1 def func(x, a, b, c, d):

2 return a*x**3 + b*x**2 + c*x + d

3

4 x = np.linspace(0, 20, 100)

5 y = func(x, 3, 1, 4, 9) + np.random.normal(0, 1000, x.shape)

6

7 coeff , cov = scipy.optimize.curve_fit(func , x, y)

8

LP-CAIT-FTSM-2021-004

Cop
yri

gh
t@

FTSM

Figure 4: Cubic model using scipy.optimize.curve_fit

There are some other implementations that could be of use in regards to curve fitting
via least squares such as NumPy’s polyfit, SciPy’s least_squares,leastsq and scikit-learn’s
linear_model.LinearRegression.

All of the models used above are polynomial models of degree 1, 2 and 3 respectively. A
general polynomial regression Python code that utilizes the three aforementioned methods —
the generalized matrix, the Vandermonde matrix and built-in SciPy modules — is attached as
Appendix A and another Python code that uses the module scikit-learn is available in Appendix
B.

5.4 Example: Global annual mean temperature

A data set of the global annual mean temperature anomalies over the course of 1880-2020 is
obtained from NASA [7, 8]. By solving for the coefficients using Equation 3, the least squares
polynomial regressions of degree 1, 2 and 3 are calculated and plotted against each other.

9

LP-CAIT-FTSM-2021-004

Cop
yri

gh
t@

FTSM

Figure 5: Polynomial models of degree 1, 2 and 3

The sum of squared residuals for degree 1, 2 and 3 are measured to be 7.0454, 3.6274 and
3.5670 respectively. The smallest sum of squared residuals is obtained when the cubic model
is used for regression. By utilizing every methods and modules to obtain the least squares
solutions as shown previously, it is observed that there is no significant discrepancy between
the solutions for the cubic model.

Figure 6: Cubic model

1 >> [-1.96857536e+03 3.17484235e+00 -1.70649924e-03 3.05672104e-07]

Generalized

2 >> Residuals: 3.5670440372642203

10

LP-CAIT-FTSM-2021-004

Cop
yri

gh
t@

FTSM

3 >> [-1.96853127e+03 3.17477441e+00 -1.70646436e-03 3.05666135e-07]

Vandermonde

4 >> Residuals: 3.5670440371850045

5 >> [-1.96847245e+03 3.17468377e+00 -1.70641782e-03 3.05658170e-07] lstsq

6 >> Residuals: 3.5670440470114393 [3.56704404]

7 >> [-1.97014946e+03 3.17726763e+00 -1.70774452e-03 3.05885183e-07]

curve_fit

8 >> Residuals: 3.567044070463524

5.5 Multiple linear regression

Given a data set where there are multiple independent variables, x, the best fit can be obtained
by solving a system of equation in the form of Equation 3 where A is the Vandermonde matrix
and the elements is sorted based on the chosen model.

A data set of the US economy from 1976 to 1987 has several interesting variables and
indicators such as the gross national product (GNP), the purchasing power of US dollar, the
price of crude oil per barrel, the amount of foreign investments among others. The first two
indicators, GNP (x1) and purchasing power (x2) are chosen against the consumer debt (in
billions) as the dependent variable y and a linear model is chosen,

y = β0 + β1x1 + β2x2

For this least squares multiple linear regression computation, scikit-learn’s linear_model.

LinearRegression method is used for the computation of the regression coefficients. The matrix
A is constructed by stacking a column matrix of 1s and the respective column values of x1 and
x2 from the dataframe [9, 10].

1 X = df[[’PURCHASE ’, ’GNP ’]]. values.reshape (-1,2)

2 y = df[’CONSUMER ’]. values

3

4 x1 = X[:, 0]

5 x2 = X[:, 1]

6

7 x1_pred = np.linspace(min(x1), max(x1), 100)

8 x2_pred = np.linspace(min(x2), max(x2), 100)

9 x1m_pred , x2m_pred = np.meshgrid(x1_pred , x2_pred)

10 modelxs = np.array([x1m_pred.flatten (), x2m_pred.flatten ()]).T

11

12 ols = linear_model.LinearRegression ()

13 model = ols.fit(X, y)

14 print(’c’, model.coef_ , model.intercept_)

15 predicted = model.predict(modelxs) # for the best fit plotting

The best fit is plotted where the dependent variable, y is on the z-axis and the two inde-
pendent variables on x and y-axis. Based on the result of the fit, the linear regression model
obtained is,

y = −7.855× 102 + (3.361× 102)x1 + (2.618× 10−1)x2

11

LP-CAIT-FTSM-2021-004

Cop
yri

gh
t@

FTSM

Figure 7: Gross national product (GNP) and purchasing power of US dollar against consumer
debt (in billions) between 1976-1987 in USA.

As the model contains more independent variables, it will be difficult to visualize the mul-
tidimensional plot for the best fit regression but it is entirely possible to measure its regression
coefficients. However, it is good practice to compute the correlation between the independent
variables as to avoid multicollinearity which can introduce instability in the regression coeffi-
cients. The values for some of the collinear coefficients may be unreliable, but it is still useful for
prediction of that particular model. It is a concern when we are trying to deduce a conclusion
of any individual independent variable on the dependent variable [9].

5.6 Function approximation of sin πx

Given a function f(x) = sin πx over [−1, 1], it is possible to approximate a sum of functions,
f̂(x) that would yield a close match to the original function f(x) where,

f̂(x) =
n∑
i=1

ciφi(x) = f̂(x) =
n∑
i=1

〈f, φi〉
〈φi, φi〉

φi(x)

The function, φi(x) is usually chosen to be of orthogonal functions in which case, the
Legendre polynomials are chosen here [1]. Since a sinusoidal over [−1, 1] resembles a cubic
function, it is highly possible that a combination of the Legendre polynomials of the third
order would result in a cubic function would minimize the sum of squared residuals. Hence,
f̂(x) is chosen to be iterated until the third order of the Legendre polynomials φi(x) = Pi(x) for
i = 0, 1, 2, 3 which are readily available as functions in a SciPy method, scipy.special.legendre.

P0(x) = 1 P1(x) = x P2(x) =
1

2
(3x2 − 1) P3(x) =

1

2
(5x3 − 3x)

To calculate for the coefficient, ci, the inner product of 〈f, φi〉 and 〈φi, φi〉 can be measured
by using the integration method available through SciPy, scipy.integrate.quad [5].

1 func = lambda x: np.sin(np.pi*x)

2 func2 = lambda x: 0.5(3*x**2-1)

3 func_product = lambda x: func(x)*func2(x) # Multiplying two functions

12

LP-CAIT-FTSM-2021-004

Cop
yri

gh
t@

FTSM

4 a, b = -1, 1

5

6 integral_f = quad(func , a, b)

7 integral_comb = quad(func_product , a, b)

After being able to measure all the coefficients, the approximated function f̂(x) can be
obtained by summing all the product of coefficients and Legendre polynomials and plotted
against the actual original function.

1 def y(order , x, coeff):

2 polyn = 0

3 for i in range(order + 1):

4 polyn += coeff[i] * legendre(i)(x)

5 return polyn

f̂(x) = (0.955)x+ (4.213× 10−18)x2 + (−1.158)x3

Figure 8: sin πx approximation using Legendre polynomials

5.7 Nonlinear regression

Given a nonlinear function to be approximated with,

f(x) =
ax

b+ ex

there are three components of importance, βt, Jt and rt, that are needed for the optimal least
squares solutions,

βt+1 = βt + (JTt Jt)
−1JTt rt

Since solving a nonlinear least squares regression is done iteratively, an initial guess condition
for β needs to be defined along with a function that computes the Jacobian matrix and the
column matrix of the residuals rt.

13

LP-CAIT-FTSM-2021-004

Cop
yri

gh
t@

FTSM

The Jacobian matrix is essentially a matrix of partial derivatives of the function with respect
to each of the coefficients. These partial derivatives can be calculated numerically by using the
finite difference method where h is a small change in x [1],

∂f

∂a
=
f(x+ h)− f(x− h)

2h

1 def Jacobian(f, x, a, b):

2 h = 1e-6

3 pdv_a = (f(x, a+h, b)-f(x, a-h, b))/(2*h)

4 pdv_b = (f(x, a, b+h)-f(x, a, b-h))/(2*h)

5 return np.column_stack ([pdv_a , pdv_b])

The Gauss-Newton equation can be made into a function that takes the nonlinear function,
the values of the data set, the initial guess values for a and b and the number of iterations.

1 def GaussNewton(f, x, y, a0 , b0 , iterations): # Gauss -Newton

2 tol = 1e-12

3 g_i = g = np.array([a0 , b0])

4 for itr in range(iterations):

5 g = g_i

6 J = Jacobian(f, x, g[0], g[1])

7 r = y - f(x, g[0], g[1])

8 g_i = g + np.linalg.inv(J.T@J)@J.T@r

9 if np.linalg.norm(g-g_i) < tol:

10 print(np.linalg.norm(g-gi), ’test’)

11 break

12 return g

By calling the Gauss-Newton function for a certain data set and guess values, it will return
the values of the coefficients that can be plotted.

Figure 9: Nonlinear least squares of function f(x) = ax
b+ex

.

14

LP-CAIT-FTSM-2021-004

Cop
yri

gh
t@

FTSM

6 Conclusion

The least squares method is one of the most widely used and reliable approach in regression
analysis with the ability to approximate data set with a wide range of functions. In this
report, we have shown several models that can be approximated to such as the linear, quadratic
and cubic models. The least square solutions to these models have been computed using the
various methods we have discussed and shown no significant variation of the coefficients and
the residuals between the methods – generalized matrix, Vandermonde matrix and built-in
modules. We have also studied, modelled and fitted other types of regression such as multiple
linear regression (MLR), least squares function approximation and nonlinear regression. This
work is part of the underlying study for the project ”Implementing quantum algorithm for least
squares data fitting through IBM-Q”.

Acknowledgements

This work is related to the ongoing research by Ts. Dr. Bahari Idrus and Assoc. Professor.
Dr. Mohammad Khatim Hasan funded by GUP-2020-061.

References

[1] J.F. Epperson. An Introduction to Numerical Methods and Analysis. Wiley, 2013. isbn:
9781118367599. url: https://books.google.com.my/books?id=310lAgAAQBAJ.

[2] Gilbert Strang. Introduction to Linear Algebra. Fourth. Wellesley, MA: Wellesley-Cambridge
Press, 2009. isbn: 9780980232714 0980232716 9780980232721 0980232724 9788175968110
8175968117.

[3] Nathaniel E. Helwig. Multiple Linear Regression. Jan. 2017.

[4] Geof H. Givens and Jennifer A. Hoeting. Computational Statistics. eng. 2nd ed. Hoboken,
N.J: Wiley, 2013. isbn: 9780470533314.

[5] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for
Python. 2001–. url: http://www.scipy.org/.

[6] Eric Ayars. Computational Physics With Python. California State University, 2013.

[7] . GISS Surface Temperature Analysis (GISTEMP), version 4. publisher: NASA Goddard
Institute for Space Studies. 2021. url: https://data.giss.nasa.gov/gistemp/.

[8] Nathan J. L. Lenssen et al. “Improvements in the GISTEMP Uncertainty Model”. en. In:
Journal of Geophysical Research: Atmospheres 124.12 (June 2019), pp. 6307–6326. issn:
2169-897X, 2169-8996. doi: 10.1029/2018JD029522. url: https://onlinelibrary.
wiley.com/doi/abs/10.1029/2018JD029522 (visited on 04/14/2021).

[9] Eric Kim. Multiple Linear Regression and Visualization in Python. Nov. 2019. url:
https://aegis4048.github.io/mutiple_linear_regression_and_visualization_

in_python.

[10] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12 (2011), pp. 2825–2830.

15

LP-CAIT-FTSM-2021-004

Cop
yri

gh
t@

FTSM

https://books.google.com.my/books?id=310lAgAAQBAJ
http://www.scipy.org/
https://data.giss.nasa.gov/gistemp/
https://doi.org/10.1029/2018JD029522
https://onlinelibrary.wiley.com/doi/abs/10.1029/2018JD029522
https://onlinelibrary.wiley.com/doi/abs/10.1029/2018JD029522
https://aegis4048.github.io/mutiple_linear_regression_and_visualization_in_python
https://aegis4048.github.io/mutiple_linear_regression_and_visualization_in_python

A Polynomial regression

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import pandas as pd

4 from scipy.linalg import lstsq

5 from scipy.optimize import curve_fit

6

7 def func(order , x, *a):

8 polyn = 0

9 i = 0

10 for p in range(order + 1):

11 polyn += a[i] * x ** p

12 i += 1

13 return polyn

14

15 def get_lamatrices(order , x, y, n):

16 power = list(range(order + 1))

17 M = x[:, np.newaxis] ** power # [1 x x^2 x^3 ...] form

18 k = y.reshape(n, 1)

19 return M, k

20

21 def get_gmatrices(order , x, y, n):

22 z = order + 1

23 A = np.empty(shape =(z, z))

24 for i in range(z):

25 itr = 0

26 for j in range(z):

27 if i == 0 and j == 0:

28 A[i, j] = n

29 itr += 1

30 else:

31 A[i, j] = sum(x ** (i + itr)) # Generalized matrix form for

A

32 itr += 1

33

34 b = np.empty(shape =(z, 1))

35 b[0, 0] = sum(y)

36 for k in range(1, z):

37 b[k, 0] = sum(y * (x ** k))

38

39 return A, b

40

41 def get_error(y, fh):

42 return np.sum((y - fh) ** 2)

43

44 df = pd.read_csv(’annualglobaltemp.csv’)

45 xdata = df[[’Year’]]. to_numpy ().reshape (-1).T # Down one dimension ,

transpose

46 ydata = df[[’Mean’]]. to_numpy ().reshape (-1).T

47

48 plt.plot(df[’Year’], df[’Mean’], ’x’)

49

50 n = xdata.size

51 x, y = xdata.astype(’longdouble ’), ydata

52 xlin = np.linspace(min(x), max(x), 1500)

53 orderlst = [3]

54

55 def fcv(x, *s):

56 return s[0] + s[1]*x + s[2]*x**2 + s[3]*x**3

16

LP-CAIT-FTSM-2021-004

Cop
yri

gh
t@

FTSM

57

58 for order in orderlst:

59 A, b = get_lamatrices(order , x, y, n)

60 M, k = get_gmatrices(order , x, y, n)

61

62 d = np.linalg.solve(M, k)

63 d_err = get_error(y, func(order , x, *d.flatten ()))

64 print(d.flatten (), ’Generalized ’)

65 print(’Residual:’, d_err)

66

67 c = np.linalg.inv(A.T @ A) @ A.T @ b

68 print(c.flatten (), ’Vandermonde ’)

69 print(’Residuals:’, get_error(y, func(order , x, *c.flatten ())))

70

71 z, res , rank , s = lstsq(A, b) # SVD decomposition

72 print(z.flatten (), ’lstsq ’)

73 z_err = get_error(y, func(order , x, *z.flatten ()))

74 print(’Residuals:’, z_err , res)

75

76 p, _ = curve_fit(fcv , x, y, p0=[1, 1, 1, 1])

77 y_cv = fcv(xlin , *p)

78 print(p, ’curve_fit ’)

79 print(’Residuals:’, get_error(y, fcv(x, *p)))

80

81 #print(np.linalg.norm(y-func(order , x, *c.flatten ())))

82

83 plt.plot(xlin , func(order , xlin , *d.flatten ()), label=r’Generalized ’)

84 plt.plot(xlin , func(order , xlin , *c.flatten ()), label=f’Vandermonde ’)

85 plt.plot(xlin , func(order , xlin , *z.flatten ()), label=r’scipy.lstsq’)

86 plt.plot(xlin , y_cv , ’--’, label=r’curve_fit ’)

87

88 plt.legend ()

89 plt.xlabel(’Year’)

90 plt.ylabel(’Mean temperature anomalies ($^{\ circ}$C)’)
91 plt.title(’Global annual mean temperature anomalies ’)

92 plt.show()

17

LP-CAIT-FTSM-2021-004

Cop
yri

gh
t@

FTSM

B Polynomial regression – sci-kit learn

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 from sklearn.linear_model import LinearRegression

5 from sklearn.preprocessing import PolynomialFeatures

6 from sklearn.pipeline import make_pipeline

7

8 x_plot = np.linspace(0, 50, 1000)

9

10 x = np.array ([0, 10, 20, 30, 40, 50], dtype=np.longdouble)

11 y = np.array ([0, 102.6903 , 105.4529 , 81.21744 , 55.6016 , 35.6859])

12

13 # Column matrix

14 X = x[:, np.newaxis]

15 X_plot = x_plot[:, np.newaxis]

16

17 plt.scatter(x, y, s=30, marker=’x’, label=’data’)

18 degreelst = [1, 2, 3, 4]

19

20 for degree in degreelst:

21 model = make_pipeline(PolynomialFeatures(degree), LinearRegression(

fit_intercept=False))

22 model.fit(X, y)

23 polyn = model.named_steps[’linearregression ’]

24 coeff = polyn.coef_

25 print(’Coefficients:’, coeff)

26 print(’R^2:’, model.score(X, y))

27 y_plot = model.predict(X_plot)

28 plt.plot(x_plot , y_plot , label=f’degree {degree}’)

29

30 plt.grid(alpha =0.3)

31 plt.xlabel(’x’)

32 plt.ylabel(’y’)

33 plt.legend ()

34 plt.show()

18

LP-CAIT-FTSM-2021-004

Cop
yri

gh
t@

FTSM

C Least squares function approximation

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.special import legendre

4 from scipy.integrate import quad

5

6 func = lambda x: np.sin(np.pi*x) # Original function to be approximated

7 orth = [lambda x: 1, lambda x: x, lambda x: x**2 -(1/3), lambda x: x**3 -(3/5)

*x] # Test

8

9 def c(f, phi2 , a, b):

10 num = quad(f, a, b) # Integral of f, limits a to b

11 dnm = quad(phi2 , a, b)

12 return num [0]/ dnm [0] # c_i = \frac{\ langle f,\ phi_i \rangle }{\ langle \

phi_i ,\ phi_i \rangle}

13

14 def y(order , x, coeff):

15 polyn = 0

16 for i in range(order + 1):

17 polyn += coeff[i] * legendre(i)(x) # \hat{f}(x) = \sum_{i=1}^n c_i \

phi_i(x)

18 return polyn

19

20 def sqerror(y, fhat):

21 return np.sum((y-fhat)**2)

22

23 def main():

24 order = 3

25 a, b = -1, 1

26 coeff = []

27 xlin = np.linspace(a, b, 1000)

28

29 for i in range(order +1):

30 phi = legendre(i) # Orthogonal function -- Legendre polynomials

31

32 f = lambda x: func(x)*phi(x) # Combining 2 functions

33 phi2 = lambda x: phi(x)*phi(x)

34

35 coeff.append(c(f, phi2 , a, b))

36

37 print(coeff)

38 print(’Squared error:’, sqerror(func(xlin), y(order , xlin , coeff)))

39

40 plt.plot(xlin , func(xlin), label=r’$\sin\,{\pi x}$’)
41 plt.plot(xlin , y(order , xlin , coeff), ’--’, label=r’Approximation ’)

42 plt.legend ()

43 plt.title(’Least squares function approximation of $\sin\,{\pi x}$’)
44 plt.show()

45

46 if __name__ == ’__main__ ’:

47 main()

19

LP-CAIT-FTSM-2021-004

Cop
yri

gh
t@

FTSM

D Multiple linear regression

1 import numpy as np

2 import pandas as pd

3 import matplotlib.pyplot as plt

4 from sklearn import linear_model

5 import seaborn as sn

6

7 df = pd.read_csv(’usecons7687.csv’)

8

9 """

10 CRUDE = dollars/barrel crude oil

11 INTEREST = % interest on ten yr. U.S. treasury notes

12 FOREIGN = foreign investments/billions of dollars

13 DJIA = Dow Jones industrial average

14 GNP = GNP/billions of dollars

15 PURCHASE = purchasing power U.S. dollar (1983 base)

16 CONSUMER = consumer debt/billions of dollars

17

18 data from https :// college.cengage.com/mathematics/brase/

understandable_statistics /7e/students/datasets/mlr/frames/frame.html

19 """

20

21 X = df[[’PURCHASE ’, ’GNP’]]. values.reshape (-1,2)

22 y = df[’CONSUMER ’]. values

23

24 x1 = X[:, 0]

25 x2 = X[:, 1]

26

27 x1_pred = np.linspace(min(x1), max(x1), 100)

28 x2_pred = np.linspace(min(x2), max(x2), 100)

29 x1m_pred , x2m_pred = np.meshgrid(x1_pred , x2_pred)

30 modelxs = np.array([x1m_pred.flatten (), x2m_pred.flatten ()]).T

31

32 ols = linear_model.LinearRegression ()

33 model = ols.fit(X, y)

34 print(model.coef_)

35 predicted = model.predict(modelxs)

36 print(predicted)

37

38 r2 = model.score(X, y)

39

40 plt.style.use(’default ’)

41 fig = plt.figure(figsize =(8, 8))

42 ax = fig.add_subplot (111, projection=’3d’)

43

44 ax.plot(x1 , x2 , y, color=’k’, zorder =15, linestyle=’none’, marker=’o’, alpha

=0.5)

45 ax.scatter(x1m_pred.flatten (), x2m_pred.flatten (), predicted , facecolor

=(0,0,0,0), s=20, edgecolor=’#70 b3f0’)

46 ax.set_xlabel(’Purchasing power’, fontsize =12)

47 ax.set_ylabel(’GNP’, fontsize =12)

48 ax.set_zlabel(’Consumer debt’, fontsize =12)

49 ax.view_init(elev=28, azim =120)

50 fig.tight_layout ()

51 plt.show()

52

53 corrMatrix = df.corr(method=’pearson ’)

54 sn.heatmap(corrMatrix , annot=True)

55 plt.show()

20

LP-CAIT-FTSM-2021-004

Cop
yri

gh
t@

FTSM

E Nonlinear least squares

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.optimize import least_squares

4

5 def func(x, a, b):

6 return a*x/(b+np.exp(x))

7

8 def Jacobian(f, x, a, b):

9 h = 1e-6

10 pdv_a = (f(x, a+h, b)-f(x, a-h, b))/(2*h) # Finite difference: pdvF = (F

(x+h)-F(x-h))/(2h)

11 pdv_b = (f(x, a, b+h)-f(x, a, b-h))/(2*h)

12 return np.column_stack ([pdv_a , pdv_b])

13

14 def GaussNewton(f, x, y, a0 , b0 , iterations): # Gauss -Newton

15 tol = 1e-12

16 g_i = g = np.array([a0 , b0])

17 for itr in range(iterations):

18 g = g_i

19 J = Jacobian(f, x, g[0], g[1])

20 r = y - f(x, g[0], g[1])

21 g_i = g + np.linalg.inv(J.T@J)@J.T@r # \beta_{i+1} = \beta{i} + (J_i

^T J_i)^{-1} J_i^T r_i

22 if np.linalg.norm(g-g_i) < tol:

23 break

24 return g

25

26 def r(a, x, y):

27 return a[0]*x/(a[1]+np.exp(x)) - y

28

29 def main():

30 x = np.linspace(0, 10, 50)

31 y = func(x, 6, 9) + np.random.normal(0, 0.02, x.shape) # + Noise

32

33 a, b = GaussNewton(func , x, y, 2.5, 0.6, 50)

34 print(a, b)

35 y_hat = func(x, a, b)

36

37 a_guess = np.array([2, 3])

38 res = least_squares(r, a_guess , args=(x, y)) # Scipy’s least squares

module

39 res_cauchy = least_squares(r, a_guess , loss=’cauchy ’, f_scale =0.02 , args

=(x, y)) # Cauchy loss function

40 print(res.x)

41 y_hatscp = func(x, res.x[0], res.x[1])

42

43 plt.plot(x, y, ’x’)

44 plt.plot(x, y_hat , label=r’Gauss -Newton ’)

45 plt.plot(x, y_hatscp , label=r’least_squares ’)

46 plt.legend ()

47 plt.show()

48

49 if __name__ == ’__main__ ’:

50 main()

21

LP-CAIT-FTSM-2021-004

Cop
yri

gh
t@

FTSM

	Introduction
	The Method of Least Squares
	Linear Least Squares & Regression
	Multiple Linear Regression (MLR)

	Least Squares Function Approximation
	Nonlinear Least Squares
	Modelling and Fitting
	Linear model
	Quadratic model
	Cubic model
	Example: Global annual mean temperature
	Multiple linear regression
	Function approximation of x
	Nonlinear regression

	Conclusion
	Polynomial regression
	Polynomial regression – sci-kit learn
	Least squares function approximation
	Multiple linear regression
	Nonlinear least squares

