
A Brief Overview of Quantum Algorithm

Mohd Harith Akmal Zulfaizal Fadillah, Bahari Idrus,
Mohammad Khatim Hasan

Centre for Artificial Intelligence Technology (CAIT),
Faculty of Information Science & Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor

Abstract

Quantum computing and quantum algorithms have been said to be able to provide
significant speed up over classical computation with classical algorithms by exploiting the
nature of quantum mechanical systems. We will go through briefly the prerequisite in
understanding quantum algorithm before getting to know more about existing quantum
algorithms. This report will look at some of the most famous algorithms – Grover’s
searching algorithm, Shor’s period-finding algorithm and Harrow-Hassidim-LLoyd (HHL)
algorithm for quantum linear systems problems.

1 Introduction

Quantum computing is not necessarily something new. It has been stipulated since the late
1970s by none other than Richard Feynman, where he deduced that quantum systems cannot be
simulated reliably by classical computers without a trade off in its run time [1]. He speculated
that a computer that obeys the law of quantum mechanics will be able to break this trade off
and offer exponentially more powerful and reliable.

Classical computation infrastructures are dictated by the laws of classical physics which
grows exponentially in power and capability every two years as per Moore’s law [2]. A bot-
tleneck of classical computational power is bound to happen as transistors and microchips get
smaller and the growth will eventually stop as it reaches quantum scale where physics do not
behave in the same way. Quantum computing could be the next alternative for a computation
infrastructure where it is fundamentally built with quantum mechanical properties which can
be taken advantage of.

Ever since the idea of quantum computing has been brought up, many physicists and com-
puter scientist have tried taking a shot at cracking this enigma and came up with potential
hardware configurations and quantum algorithms. These algorithms take advantage of quan-
tum mechanical properties to provide speed up as opposed to their classical counterparts. 50
years have passed since Feynman’s conception and the field of quantum computing has never
been bigger, and this is partly due to the fact that we are now seeing actual reliable quantum
computers being developed and are able to compute these theoretical quantum algorithms on
actual quantum machines.

In this report, we will look briefly at the fundamentals of quantum computing needed to
be able to construct a quantum algorithm circuit. We will also look at some of the most
commonly known quantum algorithms such as the Grover’s algorithm, Shor’s algorithm and
HHL algorithm for solving quantum linear system problems. This study will be the basis for
our project ”Implementing quantum algorithm for least squares data fitting through IBM-Q”.

1

LP-CAIT-FTSM-2021-005

Cop
yri

gh
t@

FTSM

2 Fundamentals of Quantum Computing

Quantum bits, like their classical counterparts, are the information representation for quantum
systems. The smallest two-level device, the simplest quantum states system capable of showing
quantum mechanical properties, is referred to as a qubit. Classical bits are discrete, consisting
of 0s and 1s, while qubits are continuous, allowing them to exist in the states of |0〉 and |1〉
or in the superposition of the two. Qubit can be described by the Bloch sphere which is a
geometrical representation of the pure state space of a two-level quantum system [3].

Figure 1: Bloch sphere

A single qubit can be represented in the basis of |0〉 and |1〉 such that the state of the two-
dimensional qubit can be expressed as the linear combination of both bases. The quantum
state then depends on the values of a and b to determine whether its in the computational
basis state or a superposition between them,

|0〉 =

(
1
0

)
|1〉 =

(
0
1

)
|ψ〉 = a |0〉+ b |1〉 such that |a|2 + |b|2 = 1

where a and b are the amplitude of the states. Measuring the qubit with quantum state |ψ〉
will collapse the wavefunction and yield the classical value of 0 with probability |a2| or 1 with
probability |b2|. Multiple qubits can be represented by taking the tensor product of multiple
single qubits,

|00〉 = |0〉 ⊗ |0〉 =

1

(
1
0

)
0

(
1
0

)
 =


1
0
0
0



|01〉 = |0〉 ⊗ |1〉

1

(
0
1

)
0

(
0
1

)
 =


0
1
0
0


One of the quantum mechanical properties that makes quantum computing beneficial is

superposition. Classically as seen with the state vector |ψ〉, the state could be either |0〉 or |1〉,
but by utilizing superposition, there exist a state where it could be either of the two and it
cannot be definitely identified until measured. For example,

|0〉+ |1〉√
2

2

LP-CAIT-FTSM-2021-005

Cop
yri

gh
t@

FTSM

this is a superposition state with equal amplitude of 1/
√

2 for both of the states. This property
of superposition allows for quantum parallelism which provides exponential speedup.

Another quantum mechanical property that is of use in quantum computation and infor-
mation is entanglement. An entangled system is inseparable such that it cannot be factored as
the tensor product of its individual subsystems [4]. Entanglement is a physical phenomenon
that affects the measurement of the system as a whole even when they are separated by a large
distance. When an entangled qubit is measured, the wave function of the other entangled qubit
also instantaneously collapses and provide a measurement that satisfies the entangled states.
For example, say we have the entangled state known as the Bell state,

|ψ〉 =
|00〉+ |11〉√

2

When the first qubit is measured to be |0〉, the second qubit that is measured at exactly the same
time also yield a measurement of |0〉 which initially puzzled physicists as they presumed that
there was some kind of faster-than-light transmission phenomenon interacting between those
particles, which is not exactly true. The entangled state is essentially linked and correlated
together such that measurement towards one of them collapses the other and this is the property
that can be taken advantage of in quantum computation and information. Some use of quantum
entanglement includes quantum teleportation and quantum superdense coding among others.

Quantum mechanics dictates such that the evolution of any quantum state is restricted to
its property of unitarity represented by a unitary operator that is the sum of probabilities of all
possible states is exactly 1. The unitary operator is also inner product and norm preserving.
For a quantum computing machine, the algorithms and logic gates that construct the machine
must therefore also be unitary, and thus reversible where the information is not lost such that
the input can be yielded from the output. The reversibility of a unitary operator, U can be
shown where V is a vector,

UU † = U †U = I

V → UV → U †UV → IV → V

by applying the conjugate transpose, U † to the vector V applied with U , the initial vector V
can be obtained. Quantum computational algorithms and quantum gates will have to obey this
principle where they should be able to yield the input once the operations are reversed.

2.1 Quantum Gates

As reversibility is an important property of a quantum computer, the logic gates used in this
machine differs from the conventional classical logic gates. Quantum logic gates must be unitary
reversible while classical gates do not necessarily have to be. The classical NOT gate is reversible
as we can retain the input information from the output but classical gates such as AND, NAND,
OR, NOR and XOR are non-reversible [3]. There are two types of quantum gates: single qubit
gates which act on single qubit and multi-qubit gates which act on multiple qubits. We will
first look into single qubit gates [4],

i. Hadamard gate maps the basis state to a superposition state.

Hadamard gate

Gate notation Matrix representation

H
1√
2

(
1 1
1 −1

)
Table 1: Hadamard gate

3

LP-CAIT-FTSM-2021-005

Cop
yri

gh
t@

FTSM

H |0〉 =
1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2

(
1
1

)
=
|0〉+ |1〉√

2

H |1〉 =
1√
2

(
1 1
1 −1

)(
0
1

)
=

1√
2

(
1
−1

)
=
|0〉 − |1〉√

2

ii. Pauli-X gate is the quantum equivalent of a NOT gate that rotates the basis state around
the X-axis of the Bloch sphere by π radians.

Pauli-X gate

Gate notation Matrix representation

X

(
0 1
1 0

)
Table 2: Pauli-X gate

X |0〉 =

(
0 1
1 0

)(
1
0

)
=

(
0
1

)
= |1〉

X |1〉 =

(
0 1
1 0

)(
0
1

)
=

(
0
1

)
= |0〉

iii. Pauli-Y gate rotates the basis state around the Y-axis of the Bloch sphere by π radians
mapping |0〉 to i |1〉 and |1〉 to −i |0〉.

Pauli-Y gate

Gate notation Matrix representation

Y

(
0 −i
i 0

)
Table 3: Pauli-Y gate

Y |0〉 =

(
0 −i
i 0

)(
1
0

)
=

(
0
i

)
= i |1〉

Y |1〉 =

(
0 −i
i 0

)(
0
1

)
=

(
−i
0

)
= −i |0〉

iv. Pauli-Z gate is a phase flip gate that rotates the basis state around the Z-axis of the
Bloch sphere by π radians that only flips the phase of |1〉 to − |1〉 and remains unchanged
when applied to |0〉.

Pauli-Z gate

Gate notation Matrix representation

Z

(
1 0
0 −1

)
Table 4: Pauli-Z gate

Z |0〉 =

(
1 0
0 −1

)(
1
0

)
=

(
1
0

)
= |0〉

4

LP-CAIT-FTSM-2021-005

Cop
yri

gh
t@

FTSM

Z |1〉 =

(
1 0
0 −1

)(
0
1

)
=

(
0
−1

)
= − |1〉

v. Phase shift (Rφ) gates map the basis state of |0〉 to eiφ |1〉. The Pauli-Z gate is a phase
shift gate where φ = π. Some other examples of phase shift gates are the S and T gates
where φ = π/2 and φ = π/4 respectively.

Rφ gate

Gate notation Matrix representation

Rφ

(
1 0
0 eiφ

)
Table 5: Phase shift, Rφ gate

S =

(
1 0
0 ei

π
2

)
=

(
1 0
0 i

)
S |0〉 =

(
1 0
0 i

)(
1
0

)
=

(
1
0

)
= |0〉

S |1〉 =

(
1 0
0 i

)(
0
1

)
=

(
0
i

)
= i |1〉

The multi-qubits gates are usually acted upon two (binary) to three (tenary) different qubits.
In general, the size of the matrix gate operator is in the form of 2n× 2n where n is the number
of qubits. Some example of the most commonly used multi-qubit quantum gates are [4],

i. CNOT/CX gate is the controlled NOT gate which acts on 2 qubits performing the NOT
operation to the target qubit when the control qubit is |1〉. The first qubit is the control
qubit whereas the second is the target qubit.

Controlled-NOT
gate

Gate notation Matrix representation

•


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Table 6: CNOT/CX gate

CX |10〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0
0
1
0

 =


0
0
0
1

 = |11〉

CX |11〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0
0
0
1

 =


0
0
1
0

 = |10〉

|00〉 7→ |00〉 |10〉 7→ |11〉
|01〉 7→ |10〉 |11〉 7→ |10〉

5

LP-CAIT-FTSM-2021-005

Cop
yri

gh
t@

FTSM

ii. Controlled-U gate is a general controlled gate which acts on 2 qubits where the matrix
U can be either the single qubit gate X, Y, Z or the phase shift matrix. When the U = X,
the gate becomes the CNOT/CX gate. For example if U = Rφ, the controlled phase shift
gate can be represented as,

Controlled-U gate

Gate notation Matrix representation

•

U


1 0 0 0
0 1 0 0
0 0 u00 u01
0 0 u10 u11


Table 7: Controlled-U gate

CRφ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ



CRφ |10〉 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ




0
0
1
0

 =


0
0
1
0

 = |10〉

CRφ |11〉 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ




0
0
0
1

 =


0
0
0
eiφ

 =
∣∣1, eiφ1

〉
The controlled phase shift gate only shifts φ when applied to the state |11〉. In general, the
controlled-U gate maps the basis states as follows,

|00〉 7→ |00〉 |10〉 7→ |1〉 ⊗ U |0〉

|01〉 7→ |01〉 |11〉 7→ |1〉 ⊗ U |1〉

iii. SWAP gate swaps the first qubit with the second and vice versa, |xy〉 → |yx〉.

SWAP gate

Gate notation Matrix representation

×

×


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Table 8: SWAP gate

SWAP |01〉 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




0
1
0
0

 =


0
0
1
0

 = |10〉

6

LP-CAIT-FTSM-2021-005

Cop
yri

gh
t@

FTSM

SWAP |10〉 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




0
0
1
0

 =


0
1
0
0

 = |01〉

|00〉 7→ |00〉 |10〉 7→ |01〉

|01〉 7→ |10〉 |11〉 7→ |11〉

iv. Toffoli gate also known as the CCNOT gate is a ternary quantum gate which acts on 3
qubits where the first and the second qubits are the control qubits and the third one is the
target. The Toffoli gate applies a NOT gate to the target only when both of the control
qubits are in the state |1〉.

Toffoli/CCNOT
gate

Gate notation Matrix representation

•

•



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


Table 9: Toffoli/CCNOT gate

CCNOT |110〉 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0





0
0
0
0
0
0
1
0


=



0
0
0
0
0
0
0
1


= |111〉

CCNOT |111〉 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0





0
0
0
0
0
0
0
1


=



0
0
0
0
0
0
1
0


= |110〉

|000〉 7→ |000〉 |100〉 7→ |100〉

|001〉 7→ |001〉 |101〉 7→ |101〉

|010〉 7→ |010〉 |110〉 7→ |111〉

|011〉 7→ |011〉 |111〉 7→ |110〉

7

LP-CAIT-FTSM-2021-005

Cop
yri

gh
t@

FTSM

Now that we have seen some of the widely used quantum gates, we are going to be able to
construct quantum algorithms utilizing them. Here are examples of a simple quantum circuit
and some gate operations,

Simple quantum circuit

|x〉
f

|x〉

|y〉 |y ⊕ f(x)〉

Hadamard transform

|0〉 H
|0〉+|1〉√

2

|1〉 H
|0〉−|1〉√

2

CNOT

|1〉 • |1〉

|0〉 |1〉

3 Deutsch & Deutsch-Josza’s algorithms

The Deutsch’s algorithm is one of the simplest algorithm that utilizes quantum parallelism
and interference that is able to show a speed up via quantum mechanical operations as opposed
to classical computation. Suppose a function, f : {0, 1} → {0, 1} where if f(0) = f(1), it is a
constant function and if f(0) 6= f(1), it is a balanced function [3]. Given function, f as a black
box, we are to determine whether the function is constant or balanced.

Classically, a minimum of two queries is needed to solve the black box – what is f(0) and
f(1) – respectively. In quantum computing, we are able to solve the problem in one query. Let
Uf be the quantum counterpart of the function,

Uf : |x, y〉 7→ |x, y ⊕ f(x)〉

Uf : |x, y ⊕ f(x)〉 7→ |x, (y ⊕ f(x))⊕ f(x)〉 = |x, y〉

If f is constant, f(0) ⊕ f(1) = 0 whereas if f is balanced, f(0) ⊕ f(1) = 1. The Deutsch’s
algorithm can then be simplified such that it solves for f(0)⊕ f(1).

The quantum circuit to solve this black box can be represented below, with two input qubits
initialized as |0〉 and |1〉.

|0〉

|ψ0〉

H

|ψ1〉

Uf

|ψ2〉

H

|ψ3〉
|1〉 H

where,
|ψ0〉 = |01〉

|ψ1〉 = (
|0〉+ |1〉√

2
)(
|0〉 − |1〉√

2
)

To evaluate |ψ3〉, it is useful to look at the phase kickback trick which is commonly used in
various quantum algorithms. Consider for any x ∈ {0, 1},

|ψ〉 = Uf |x〉 |−〉 =
1√
2

(Uf |x〉 |0〉 − Uf |x〉 |1〉) =
1√
2

(|x〉 |f(x)〉 − |x〉 |1⊕ f(x)〉)

8

LP-CAIT-FTSM-2021-005

Cop
yri

gh
t@

FTSM

Considering the two outcomes of f(x), if f(x) = 0, the equation becomes,

|ψ〉 = |x〉 ⊗ 1√
2

(|0〉 − |1〉) = |x〉 |−〉

and if f(x) = 1,

|ψ〉 = |x〉 ⊗ 1√
2

(|1〉 − |0〉) = − |x〉 |−〉

We observe that there is a -1 phase change between the two outcomes on the first qubit while
the second qubit remains exactly the same. The phase kickback trick can then be simplified as,

Uf |x〉 |−〉 = (−1)f(x) |x〉 |−〉

Applying the phase kickback trick to |ψ2〉, we can obtain,

|ψ2〉 = (
(−1)f(0) |0〉+ (−1)f(1) |1〉√

2
)(
|0〉 − |1〉√

2
)

=


±(
|0〉+ |1〉√

2
)(
|0〉 − |1〉√

2
), if f is constant

±(
|0〉 − |1〉√

2
)(
|0〉 − |1〉√

2
), if f is balanced

|ψ3〉 =


± |0〉 (|0〉 − |1〉√

2
), f is constant

± |1〉 (|0〉 − |1〉√
2

), f is balanced

Thus, from the observation at |ψ3〉 we are able to solve the black box problem with only one
query by only measuring the first qubit. If the first qubit state is |0〉, the function is constant
and if its |1〉, the function is balanced.

The Deutsch’s algorithm we have seen is actually a general simple case of the Deutsch-
Josza algorithm which acts on n inputs. In this case, suppose a function f : {0, 1}n → {0, 1},
it takes n binary values as its input and outputs either 0 or 1. If all the outputs are either 0
or 1 respectively, the function is constant where as if exactly half of the outputs is 0 while the
other half is 1, the function is balanced.

Classically, the solution requires 2n−1 + 1 queries. The Deutsch-Josza algorithm solves the
black box with exactly one evaluation of f . Let Uf be the quantum counterpart of the function,

Uf : |x〉⊗n |y〉 7→ |x〉⊗n |y ⊕ f(x)〉

|0〉⊗n

|ψ0〉

H⊗n

|ψ1〉

Uf

|ψ2〉

H⊗n

|ψ3〉
|1〉 H

Much like the Deutsch’algorithm, all n of the input qubits, initialized as |0〉⊗n and the answer
register, |1〉 are put into superposition states before passed through the function, Uf . The query
register of n qubits is then applied with a Hadamard gate before being measured.

9

LP-CAIT-FTSM-2021-005

Cop
yri

gh
t@

FTSM

|ψ0〉 = |0〉⊗n |1〉

|ψ1〉 =
∑

x∈{0,1}n

|x〉√
2n

(
|0〉 − |1〉√

2
)

|ψ2〉 =
∑

x∈{0,1}n

(−1)f(x) |x〉√
2n

(
|0〉 − |1〉√

2
)

The Hadamard transform, H⊗n on |x1, x2, ..., xn〉, can be summarised as,

H⊗n |x〉 = H |x1〉 ⊗H |x2〉 ⊗ ...⊗H |xn〉

=
1√
2

(|0〉+ (−1)x1 |1〉)⊗ 1√
2

(|0〉+ (−1)x2 |1〉)⊗

· · · ⊗ 1√
2

(|0〉+ (−1)xn |1〉)

=
1√
2n

∑
z∈{0,1}n

(−1)x1z1+x2z2+...+xnzn |z1〉 |z2〉 ... |zn〉

H⊗n |x〉 =
(−1)xz |z〉√

2n

Using this equation, it is now possible to evaluate |ψ3〉,

|ψ3〉 =
∑

z∈{0,1}n

∑
x∈{0,1}n

(−1)xz+f(x) |z〉
2n

(
|0〉 − |1〉√

2
)

The amplitude of |z〉 = |0〉⊗n is
∑

x(−1)f (x)/2n. If the function is constant, the amplitude
will be either +1 or -1. If f is balanced, the positive and negative amplitudes cancel each other
and the total amplitude of the state |0〉⊗n is 0. Hence, we have shown that it is possible to
solve the black box with just one evaluation. However nice of a speedup both of the Deutsch
and Deutsch-Josza’s algorithm have shown, they have no real practical application. They serve
as a proof of concept that quantum algorithms are able to solve certain problems much faster
compared to classical computing.

4 Grover’s algorithm

Grover’s algorithm, devised by Lov Grover back in 1996, is a quantum algorithm that
searches an index or key value in an unstructured database using O(

√
N) evaluations where

N is the size of the domain. Classically, the searching algorithm takes linear time, O(N) to
evaluate as opposed to the exponential speedup provided by Grover’s algorithm.

Suppose a function, f : {0, 1}n → {0, 1} such that f(x) = 0 but for one key value, x∗ ∈
{0, 1}n where f(x∗) = 1. Assuming that N = 2n where there are N many entries, we need to
find x∗. Given a quantum oracle O,

O : |x〉 |q〉 → |x〉 |q ⊕ f(x)〉

where |x〉 is the index register and |q〉 is the oracle qubit. The Grover search can implemented
by first applying the Hadamard transformation on the first register,

1√
N

∑
x∈{0,1}n

|x〉 |0〉

10

LP-CAIT-FTSM-2021-005

Cop
yri

gh
t@

FTSM

Applying the oracle operator, O,

1√
N

∑
x∈{0,1}n

|x, f(x)〉

where all the basis states has the same amplitude 1/
√
N . Measuring the first register will give

one of the basis states and measuring the second qubit will give |0〉 with probability (N −1)/N
or |1〉 with probability 1/N .

There are two tricks in implementing the Grover search. Essentially what the Grover’s
algorithm tries to achieve is to flip and amplify the amplitudes of the states some number of
times such that the only significant amplitude left is of the key value basis state while the
amplitudes of the rest of the states have diminished. The first trick is the phase inversion
of x∗. Firstly, we set the control qubit of |0〉 to its superposition state [5]. By using the phase
kickback identity seen from the Deutsch’s algorithm, we are able to get,

O : |x〉 (|0〉 − |1〉√
2

)→ (−1)f(x) |x〉 (|0〉 − |1〉√
2

)

O : |x〉 → (−1)f(x) |x〉

what this does is essentially flipping the the amplitude of only the key value while leaving the
rest unchanged. Now that we have achieved flipping, we need to amplify the amplitude of the
key value [5].

The second trick, inversion about the mean, does exactly what we need. To understand
exactly what is meant by this, we consider a sequence of integers, [23, 18, 34, 56, 39] where the
mean, µ = 34. The inversion about the mean of a particular integer from the sequence can be
defined as the difference between the mean and the initial value plus the mean.

α
′
= µ+ (µ− α) = 2µ− α

Given a general state, ∑
k

αk |k〉

the inversion about the mean will produce
∑

k(2µ− αk) |k〉 where

µ =
1

N

∑
k

αk

In Grover search, we must first change the basis to a general superposition state before
applying the inversion about |ψ〉 before reverting to the computational basis. Consider the
operator, U⊥0 ,

U⊥0 =

{
|x〉 → − |x〉 , x 6= 0

|0〉 → |0〉

U⊥0 inverts the phase of all states that are orthogonal to |0〉. In terms of matrices,

U⊥0 = (2 |0〉 〈0| − I)

To do an inversion about the superposition state |ψ〉 = 1/
√
N
∑

k |k〉, some fashion of
Hadamard transformations must be applied to U⊥0 . For this basis change, HU⊥0 H is,

HU⊥0 H = (2 |ψ〉 〈ψ| − I)

11

LP-CAIT-FTSM-2021-005

Cop
yri

gh
t@

FTSM

This matrix essentially inverts any vector applied to it around the mean. Now that we have
studied these two tricks, we are able to flip and amplify the amplitude of the key value. These
steps are done in iterations until the amplification of the amplitude of the key value state is
significant. This step, which is represented in the dashed box in the quantum circuit, is called
the Grover’s iteration and are usually repeated for O(

√
N) times.

Grover’s algorithm quantum circuit

|0〉⊗n H⊗n

O

HU⊥0 H

|1〉 H

The Grover’s algorithm start with the state |000...0〉 in the first input register. Both the
first and the second registers are applied with the Hadamard transformation. The next step is

applying the Grover’s iteration which is usually applied for π
√
N

4
times. In this iteration, the

oracle or the phase inversion operator, O and the inversion about the mean or the Grover’s
diffusion operator, HU⊥0 H are applied. The first register’s qubits are then measured which will
show an amplified amplitude of the key value state.

Figure 2: Grover’s iteration effect on the amplitudes of states [6].

5 Shor’s algorithm

The invention of a quantum algorithm for factorization that operates in polynomial time in n
is one of the most well-known quantum computing achievements. Shor’s algorithm, named
after Peter Shor, manages just that in O(n3 log n) time using O(n2 log n log log n) gates. The
most widely used public-key cryptosystem, RSA, lies solely on the basis that these big numbers
are impossible to factored classically. However, this algorithm shows that it may be feasible to
do so on a quantum computer which will render the cryptosystem useless. This has led to the
birth of a new sub-field called post-quantum cryptography which is devising quantum-proof
cryptographic algorithms.

12

LP-CAIT-FTSM-2021-005

Cop
yri

gh
t@

FTSM

Given a large integer N = p · q for some prime integers p and q, we want to find the prime
factors p and q. Shor’s algorithm reduces this problem to a period-finding problem in a function
with cyclic property. Suppose the function fa,N(x) = ax (mod N) where a and N are relatively
prime. The period of fa,N , r, is the least number of x such that ar (mod N) = 1.

To understand the algorithm for integer factorization, it is useful to look at number theory
[3, 7]. Below is a simplified algorithm of integer factorization,

i. Pick a number a that is coprime with N .

ii. Find the period r of the function ar (mod N) where it is the smallest r such that ar ≡
1 (mod N).

iii. If r is even: x ≡ ar/2 (mod N).
−→ If x+ 1 6≡ 0 (mod N): At least one of {p, q} is in gcd(x+ 1, N) and gcd(x− 1, N).
Else: Find another a.

For example, consider factorizing the integer 15 with a = 13 where the period, r of 13r (mod 15) =
1 is 4.

x = ar/2 (mod N) = 132 (mod 15) = 4

x+ 1 = 5 ≡ 5 (mod 15)

gcd(5, 15) = 5 gcd(3, 15) = 3

p, q = 5, 3

The problem of finding the period can be exploited by quantum computing using Quantum
Fourier Transform providing polynomial runtime. The period of the modular exponentiation
sequence can be found using QFT (see Appendix A) in the encoded amplitudes of the quantum
state.

A Hadamard transform is applied to the first register of m qubits producing an equal
superposition state.

1√
N

N−1∑
x=0

|x〉 |0〉

Next is a modular exponentiation of the function Ufa,N (x) = ax (mod N) on the second register
of qubits where a is chosen randomly,

1√
N

N−1∑
x=0

|x〉 |f(x)〉

The second register is measured, the only states left in the superposition are those integers x
whose ax (mod N) is the same as the measured value. The only non-zero states in the first
register will be the multiples of r with some offset t [8]. Applying QFT on the first register,
the state becomes,

1√
N/r

N
r
−1∑

j=0

|jr + t〉 QFT−−−→
N−1∑
j=0

1√
r
|j〉

where j = kN
r

. Now that we have a superposition state with period N/r with no offset where
the only basis states with non-zero amplitudes are those which are multiples of N/r. Measuring
the first register, we will obtain kN

r
where computing gcd(kN

r
, N) will give us N/r and thus we

can obtain the period, r.

13

LP-CAIT-FTSM-2021-005

Cop
yri

gh
t@

FTSM

Shor’s algorithm quantum circuit

|x〉⊗n

|ψ0〉

H⊗n

|ψ1〉

Ufa,N

|ψ2〉

QFT †

|w〉⊗n

Let’s try solving the factorization of 15 using the quantum period-finding algorithm [7]. The
binary representation of 15 is 1111, hence we will need 4 qubits for our first register, |x〉 and
another 4 qubits for the second register, |w〉 which we will apply the modular exponentiation
on where |x〉 |w〉 → |x〉 |w ⊕ fa,N(x)〉.

|ψ0〉 = |0〉⊗4 |0〉⊗4

|ψ1〉 = [H⊗4 |0〉] |0〉⊗4 =
1

4
(|0〉4 + |1〉4 + |2〉4 + ...+ |15〉4) |0〉4

|ψ2〉 =
1

4
(|0〉4

∣∣130 (mod 15)
〉

+ |1〉4
∣∣131 (mod 15)

〉
+

· · ·+ |15〉4
∣∣1315 (mod 15)

〉
)

=
1

4


|0〉4 |1〉4 + |1〉4 |13〉4 + |2〉4 |4〉4 + |3〉4 |7〉4 +
|4〉4 |1〉4 + |5〉4 |13〉4 + |6〉4 |4〉4 + |7〉4 |7〉4 +
|8〉4 |1〉4 + |9〉4 |13〉4 + |10〉4 |4〉4 + |11〉4 |7〉4 +
|12〉4 |1〉4 + |13〉4 |13〉4 + |14〉4 |4〉4 + |15〉4 |7〉4


Measuring the |w〉 register will result in the output between 1, 13, 4, 7 with equal probabilities.
Let assume we measure 7. After |w〉 = |7〉4, |x〉 becomes,

|x〉 =
1

2
(|3〉4 + |7〉4 + |11〉4 + |15〉4)

Applying QFT† on the |x〉 register,

QFT† |x〉 =
1√
N

N−1∑
y=0

e
−2πixy
N |y〉

=
1

4

15∑
y=0

(e
−3πiy

8 + e
−7πiy

8 + e
−11πiy

8 + e
−15πiy

8) |y〉

=
1

4
(4 |0〉4 + 4i |4〉4 − 4 |8〉4 − 4i |12〉4)

Measuring the |x〉 register will give 0, 4, 8, 12 with equal probabilities. 3/4 of the outputs are
multiples of N/r. Now that we have obtained r, the prime factors can be find classically.

The function Ufa,N in the quantum circuit is implemented using phase rotation gates which
is akin to the ones in quantum phase estimation (QPE). Letting fa,N(x) = ax (mod N), the
function Ufa,N can be represented by using controlled-U gates,

x = [x1, x2, ..., xn] = 2n−1x1 + 2n−2x2 + ...+ 20xn

fa,N(x) = a2
n−1x1a2

n−2x2 ...a2
0xn (mod N)

14

LP-CAIT-FTSM-2021-005

Cop
yri

gh
t@

FTSM

|x1〉 •

|x2〉 •

...

|xn〉 •

|w〉⊗n a2
n−1

(mod N) a2
n−2

(mod N) a2
0

(mod N)

We can see that the Shor’s algorithm circuit now looks similar to the Quantum Phase Estimation
circuit (see Appendix B). Shor’s period-finding algorithm is essentially a special case of phase
estimation.

6 Harrow-Hassidim-Lloyd (HHL) algorithm

In 2009, Aram Harrow, Avinatan Hassidim, and Seth Lloyd devised the quantum algorithm for
linear systems of equations which known as the HHL algorithm [9]. This algorithm yields a
scalar measurement of the solution vector as its output and does not give the actual values of
the solutions.

This algorithm provides a significant speedup over its classical counterpart given that the
linear system is sparse and the condition number κ which is the ratio of the maximum eigenvalue
and the minimum is low. The algorithm runs at time O(κ

2s2

ε
log2N) where s is the sparseness

and ε is the accuracy, which trumps over the fastest classical runtime of O(Nκ) providing
exponential speedup.

Classically, the problem of linear system Ax = b can be solved by finding the values of
x = A−1b. In quantum computation, we are still trying to find the solution vector |x〉 given
an N ×N Hermitian matrix, A and the unit vector, |b〉.

A |x〉 = |b〉 |x〉 = A−1 |b〉

Since A is Hermitian, its spectral decomposition is,

A =
N−1∑
j=0

λj |uj〉 〈uj|

A−1 =
N−1∑
j=0

λ−1j |uj〉 〈uj|

where λj is the eigenvalues of A and |uj〉 is its eigenvectors. The unit vector |b〉 can be defined
in the eigenbasis of A as,

|b〉 =
N−1∑
j=0

bj |uj〉

Hence, we can obtain |x〉 such that,

|x〉 = A−1 |b〉 =
N−1∑
j=0

λ−1j bj |uj〉

15

LP-CAIT-FTSM-2021-005

Cop
yri

gh
t@

FTSM

The HHL algorithm requires three registers, initialized to |0〉. One register, |0〉r is used to
store the binary representation of A and another one, |b〉m carries the vector solution [7] acts as
the memory register which will output |x〉. The third register is the ancilla or auxiliary qubit
which is used in the intermediate steps of the algorithm, |0〉a. The quantum circuit for HHL is
as follows where the dashed boxes are QPE and QPE† respectively,

HHL algorithm quantum circuit

|0〉a R

|0〉r / H⊗n • QFT † • QFT • H⊗n

|b〉m / U † U

Loading the data b to the memory register, |b〉m.

|0〉nb → |b〉nb
We can apply the Quantum Phase Estimation (QPE) where an estimate of the eigenvalues can
be represented in quantum states for |0〉r,

U = eiAt :=
N−1∑
j=0

|uj〉 〈uj|

such that the quantum state of the registers expressed in the eigenbasis of A is,

|0〉a |0〉r |b〉m →
N−1∑
j=0

bj |0〉a |λj〉r |uj〉m

where |λj〉r is the n bit binary representation of λj. A rotation conditioned with |λj〉r is applied
to the ancilla qubit, |0〉a.

N−1∑
j=0

bj |λj〉r |uj〉m

(√
1− C2

λ2j
|0〉+

C

λj
|1〉
)

where C is the normalization constant. By applying QPE†, we can get rid of the eigenvalues
states, |λj〉r.

N−1∑
j=0

bj |0〉r |uj〉m

(√
1− C2

λ2j
|0〉+

C

λj
|1〉
)

We will only get |x〉 when the measured outcome of the ancilla qubit is |1〉. Otherwise, the
algorithm has to be repeated and some sort of an amplitude amplication subroutine can be
used to increase the probability of measuring |1〉 [4].

|x〉 ≈

(√
1∑N−1

j=0 |bj|
2 / |λj|2

)
N−1∑
j=0

bj
λj
|0〉r|uj〉m

Since then, there are several improvements that has been made in favor of the HHL algorithm
that improves the run time by either replacing the QPE with Quantum Fourier Transform or

16

LP-CAIT-FTSM-2021-005

Cop
yri

gh
t@

FTSM

by using a hybrid classical-quantum algorithm [10, 11]. Improvements on algorithm that solves
the linear system have also been shown experimentally for 8× 8 matrix via adiabatic quantum
computing inspired approach which is based on Hamiltonian simulation. Recently, a variational
approach for solving quantum linear system problems has been demonstrated to perform well
in noisy intermediate-scale quantum (NISQ) computers up to 1024 × 1024 problem size (10
qubits) [12].

Figure 3: A schematic overview of the variational quantum linear solver (QLSP) [12].

The inputs are the linear combination of unitaries Al where the cost function will be es-
timated via an ansatz V (α) with parameters α in a quantum-classical loop. Once the cost
reaches the desired threshold, the optimal parameters αopt will be passed through the ansatz
to form |x〉. Since this is essentially a different algorithm altogether from the HHL algorithm,
we will not go much further than this.

7 Conclusion

Quantum computing and algorithms have shown promising results in providing speedup when
compared to its classical counterpart for certain cases. The algorithms that have been discussed
in this report are some of the most important groundbreaking quantum algorithms with great
potential to be utilized in more complex and grounded problems. The only obstacle for quantum
computing before we are able to fully utilize these algorithms are the hardware limitations on
the machines themselves. In this report, we have discussed Grover’s searching algorithm, Shor’s
period-finding algorithm and HHL algorithm for solving linear systems. We are particularly
interested in the last algorithm as it serves as the foundation for our study in implementing
least squares data fitting.

Acknowledgements

This work is related to the ongoing research by Ts. Dr. Bahari Idrus and Assoc. Professor.
Dr. Mohammad Khatim Hasan funded by GUP-2020-061.

References

[1] Richard P Feynman. “Simulating physics with computers”. In: Int. J. Theor. Phys 21.6/7
(1982).

[2] Gordon E Moore et al. Cramming more components onto integrated circuits. 1965.

[3] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information.
2002.

17

LP-CAIT-FTSM-2021-005

Cop
yri

gh
t@

FTSM

[4] J Abhijith et al. “Quantum algorithm implementations for beginners”. In: arXiv e-prints
(2018), arXiv–1804.

[5] Noson S Yanofsky and Mirco A Mannucci. Quantum computing for computer scientists.
Cambridge University Press, 2008.

[6] Vladimir Silva. Practical quantum computing for developers: programming quantum rigs
in the cloud using Python, quantum assembly language and IBM QExperience. Apress,
2018.

[7] Abraham Asfaw et al. Learn Quantum Computation Using Qiskit. 2020. url: http:

//community.qiskit.org/textbook.

[8] Jozef Gruska et al. Quantum computing. Vol. 2005. McGraw-Hill London, 1999.

[9] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum algorithm for linear
systems of equations”. In: Physical review letters 103.15 (2009), p. 150502.

[10] Andrew M Childs, Robin Kothari, and Rolando D Somma. “Quantum algorithm for
systems of linear equations with exponentially improved dependence on precision”. In:
SIAM Journal on Computing 46.6 (2017), pp. 1920–1950.

[11] Yonghae Lee, Jaewoo Joo, and Soojoon Lee. “Hybrid quantum linear equation algorithm
and its experimental test on ibm quantum experience”. In: Scientific reports 9.1 (2019),
pp. 1–12.

[12] Carlos Bravo-Prieto et al. “Variational quantum linear solver: A hybrid algorithm for
linear systems”. In: Bulletin of the American Physical Society 65 (2020).

18

LP-CAIT-FTSM-2021-005

Cop
yri

gh
t@

FTSM

http://community.qiskit.org/textbook
http://community.qiskit.org/textbook

A Quantum Fourier Transform (QFT)

The quantum Fourier transform is a linear transformation of qubits which essentially changes
the basis of qubits from computational, {|0〉 , |1〉} to Fourier basis, eg: {|+〉 , |−〉} for single
qubit.

|x̃〉 = QFT |x〉

QFT |x〉 =
1√
N

N−1∑
y=0

e
2πixy
N |y〉

The single qubit QFT is essentially the Hadamard transform. Suppose for a single qubit
case with N = 2,

QFT |x〉 =
1√
2

2−1∑
y=0

e
2πixy
N |y〉

=
1√
2

[|0〉+ eπix |1〉]

QFT |0〉 =
1√
2

[|0〉+ |1〉] = |+〉

QFT |1〉 =
1√
2

[|0〉+ eiπ |1〉] =
1√
2

[|0〉 − |1〉] = |−〉

In QFT, each qubit state is changed from |xk〉 to |0〉 + exp
{

2πix/2k
}
|1〉 [3]. This can be

easily shown where,

|x〉 = |x1, x2, x3, ..., xn〉 = |x1〉 ⊗ |x2〉 ⊗ ...⊗ |xn〉yQFT

|x̃〉 =
1√
N

(|0〉+ e
2πix
21 |1〉)⊗ (|0〉+ e

2πix
22 |1〉)⊗ ...⊗ (|0〉+ e

2πix
2n |1〉)

this product representation of QFT is useful as it gives us ideas as how the quantum circuit is
constructed. Besides the Hadamard gate that gives the superposition of states, the quantum
circuit for QFT is constructed by using the unitary rotation gate, Rk,

Rk ≡
(

1 0

0 e2πi/2
k

)
|x1〉 H R2 R3 · · · Rn

|x2〉 • H R2 · · · Rn−1

|x3〉 • •
...

|xn〉 • •

19

LP-CAIT-FTSM-2021-005

Cop
yri

gh
t@

FTSM

B Quantum Phase Estimation (QPE)

Quantum phase estimation utilizes QFT as one its main subroutine. Remember that a unitary
operator has eigenvalues of the form eiθ and eigenvectors that form an orthonormal basis,

U |ψ〉 = eiθψ |ψ〉

The goal of QPE is to estimate θψ given the ability to prepare ψ and the ability to apply
U . One of the main uses of QPE includes simulating Hamiltonian evolution. The procedure
uses two registers – first register of n qubits initialized as |0〉 and the second register of |ψ〉.
The precision and accuracy for θψ can be obtained by increasing n number of qubits. This
procedure starts off by applying Hadamard transformation on the first register before applying
the controlled-U2j operation on the second. The state of the first register can be represented
as,

|0〉⊗n U2j

−−→ 1√
2

n

(|0〉+ e2πiθψ2
n−1 |1〉)⊗ (|0〉+ e2πiθψ2

n−2 |1〉)⊗ · · · ⊗ (|0〉+ e2πiθψ2
0 |1〉)

The inverse QFT is then applied to the first register by reversing the QFT circuit seen in
Appendix A. This operation will yield a good estimate for θψ [3]. If we carefully examine the
form of the first register prior to the inverse QFT operation, it is similar to that of the product
of QFT where θψ → 2π/2x,

QFT : |x̃〉 =
1√
N

(|0〉+ e
2πix
21 |1〉)⊗ (|0〉+ e

2πix
22 |1〉)⊗ ...⊗ (|0〉+ e

2πix
2n |1〉)

From this observation, it is trivial that applying an inverse QFT to the first register will give∣∣∣θ̃〉 which is an estimate of θψ [3],

1

2n/2

2n−1∑
t=0

e2πiθψt |t〉 |ψ〉 →
∣∣∣θ̃ψ〉 |ψ〉

The circuit for this phase estimation procedure can be represented as,

|0〉⊗n H⊗n • QFT−1
∣∣∣θ̃ψ〉

|ψ〉 U2j |ψ〉

20

LP-CAIT-FTSM-2021-005

Cop
yri

gh
t@

FTSM

	Introduction
	Fundamentals of Quantum Computing
	Quantum Gates

	Deutsch & Deutsch-Josza's algorithms
	Grover's algorithm
	Shor's algorithm
	Harrow-Hassidim-Lloyd (HHL) algorithm
	Conclusion
	Quantum Fourier Transform (QFT)
	Quantum Phase Estimation (QPE)

