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Abstract

Solving linear systems of equations is fundamental in many areas of science and en-
gineering. As data sets gets bigger, the task of classically solving linear systems and
especially inverting a matrix gets computationally harder. Quantum linear solver algo-
rithm (QLSA) provides an algorithm that promises speed-up in solving linear systems
which could prove beneficial. However, the algorithm does have its own caveats which has
pushed researchers to improve existing quantum linear solver algorithms. In this study, we
will look at the original Harrow-Hassidim-Lloyd (HHL) algorithm and its improvements
as well as their implementations. We will also be looking at more recent developments on
hybrid quantum linear solver and variational quantum linear solver (VQLS) algorithms
and their implementations on IBM Quantum machines.

1 Introduction

As the Moore’s law is coming to an end with the ever increasingly huge data sets making
problem solving computationally harder, the field of quantum computation has proved, by
theory, that it is able to overcome existing limitations observed in current classical computing
[1, 2]. One of the most important and fundamental problem to be solved in many areas of
science and engineering is the problem of solving linear systems of equations. This relatively
simple problem by classical standard opens up new possibilities in a variety of fields such as
machine learning and differential equations among others. The importance of solving linear
systems has pushed quantum computing and algorithm researchers to devise quantum linear
solver algorithms (QLSA) which has existed for some time and contributed to the field of
quantum machine learning.

However, researchers are still developing new improvements to existing QLSA and devising
new potential algorithms that could prove to be more viable with current Noisy Intermediate
Scale Quantum (NISQ) computers. We have looked theoretically and in depth at the original
Harrow-Hassidim-Lloyd (HHL) algorithm in our previous report [3] on quantum algorithms.
In this report, we will be focusing more on the implementations that have been realized of
several quantum linear solver algorithms on circuit based quantum computers. We will look at
the original HHL and its improvements as well as the implementation of an optimized circuit
of the algorithm. Afterwards, we will focus on recent developments on hybrid QLSAs and
their implementations on IBM Quantum (IBM-Q) machines and observe how different hybrid
algorithms vary with each other in their construction and outcomes. Finally, we will look at a
variational approach of solving linear systems which are more reliable in current NISQ quantum
computers.
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2 General quantum linear solver algorithm

The quantum algorithm for linear systems of equations devised initially by Harrow, Hassidim
and Lloyd (2009) is generally known as the Harrow-Hassidim-Lloyd (HHL) algorithm [4]. This
algorithm yields a scalar measurement of the solution vector as its output and does not give
the actual values of the solutions although it is possible through state tomography, it is very
inefficient and expensive. The algorithm provides a significant speedup over its classical coun-
terpart on the condition that the linear system is sparse and the condition number κ which
is the ratio of the maximum eigenvalue an the minimum is low. The algorithm runs at time
O(κ

2s2

ε
log2N) where s is the sparseness and ε is the precision, which trumps over the fastest

classical conjugate-gradient method runtime of O(Nκs log(1/ε)) providing exponential speedup
in N but linearly slower in s and κ.

The subroutine that makes up the HHL algorithm includes quantum phase estimation which
is the algorithm used for the matrix inversion needed in solving linear equations. Tweaks and
alterations have been made to improve HHL algorithm in terms of its runtime complexity
with respect to the condition number κ and the precision ε. Ambainis (2010) managed to
improve by reducing the dependence of condition number from κ2 to κ log3 κ by introducing
variable time amplitude amplification resulting in the matrix inversion being BQP-complete [5].
Further improvements by Childs, Kothari and Somma (2017) managed to reduce the precision
number dependence from O(poly(1/ε)) to O(poly log(1ε)) [6]. Improvement has also been
made in making the algorithm possible for dense matrices where Wossnig, Zhao and Prakash
(2017) introduced an algorithm based on quantum singular value estimate (QSVE) providing
polynomial speedup for dense matrices, O(κ2

√
npolylog(n/ε)) [7].

Figure 1: a. Original HHL algorithm. b. Optimized quantum circuit for HHL algorithm
solving a 2× 2 linear system of equations. [8]

An experimental implementation of HHL algorithm is reported by Cai, Weedbrook et al
(2013) by demonstrating and solving a 2× 2 linear equations for various input vectors [8]. The
circuit for the HHL algorithm is optimized and compiled into a 4-qubit circuit composed of the
ancilla, phase and input registers as in Figure 1. The paper demonstrated the experiment on
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the matrix,

Â =

(
1.5 0.5
0.5 1.5

)
for input vectors,

|b1〉 =
1√
2

(
1
1

)
, |b2〉 =

1√
2

(
1
−1

)
, |b3〉 =

(
1
0

)
The algorithm is implemented and the measurement of expectation values of the Pauli ob-
servables X, Y and Z for each input vectors |b〉 are obtained. Figure 2 shows the ideal and
experimental expectation values for each observables, 〈x|M |x〉. The fidelity can be obtained
by calculating the inner product betweeen |x〉 and the density matrix from the output state, ρx,
〈x| ρx |x〉. Relative to the ideal outcomes, the yielded output from the algorithm have fidelities
of 0.993, 0.825 and 0.836 for |b1〉 , |b2〉 and |b3〉 respectively. The difference in the fidelities
lies in the construction of the algorithm circuit on the optical setup causing high-order photon
emission events and post-selection in CNOT gates.

Figure 2: Experimental results on the expectation values for X, Y and Z observables for
|b1〉 , |b2〉 and |b3〉 respectively. [8]

In HHL algorithm and its subsequent improvements, the problem of encoding vector and
matrix into quantum states still persist [9]. The encoding, while not a part of the algorithms
itself, are crucial to solving the linear systems but yet it is rarely touched upon in the literature.
The problem of encoding these data are often considered as a separate non-trivial problem which
can make or break the QLSA. Theoretically, the encoding can achieve exponential compression
with O(log n) qubits and to make the HHL algorithm reliable, the running time of the encoding
algorithm should be in O(polylog(n)) time [9].

The oracle quantum random access memory (QRAM) is the standard model for memory
allowing queries in quantum superposition which have studied extensively as a solution to the
encoding problem. Real-valued vector are manipulated into amplitudes of the quantum state
which is the elements of the vectors scaled by the norm using operation R which should run at
most polylog in N . Figure shows the vector state preparation for 4-dimensional state |φ〉 in the
amplitudes of the quantum state. An improved augmented QRAM which pre-process all the
vector elements classically before loading is proposed by Prakash (2018) [10]. It utilizes quantum
key value map to insert the norm elements into the superposition via conditional rotation and
amplitude amplification. Another contending solution to the encoding problem is using the
technique by Grover and Rudolph (2002) technique which generates a quantum superposition
that encodes an approximate version of a classical probability distribution provided its density
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Figure 3: Vector state preparation for 4-dimensional state |φ〉. [10]

is efficiently integrable [11]. However, this solution has not been explored much as QRAM has
shown to be more viable option in most cases.

3 Hybrid quantum linear solver algorithm

In this section, we will be focusing on modified versions of the original HHL algorithm and
their implementations on IBM Quantum. From the previous section, we have learned that
the subroutine, quantum phase estimation, involved in the algorithm responsible for matrix
inversion is the most complex and expensive part. The hybrid quantum linear solver algorithms
we will be looking will attempt to alter this subroutine in order to reduce the overall circuit
complexity yielding results identical to those of the HHL algorithm.

Lee, Joo and Lee (2019) proposed a hybrid quantum algorithm for linear systems, referred
to as Hybrid Reduced HHL algorithm, based on the HHL algorithm with the idea of removing
unnecessary quantum part with prior classical information which can then be feed into a short-
ened reduced HHL circuit [12]. Based on Figure 4, the matrix Âλ and vector b undergo a prior
QPE algorithm which would yield an output that dictate the type of reduced ancillary quantum
encoding (AQE) in the reduced HHL. The hybrid algorithm is supposed to solve specific linear
equations in the form of,

Âλx = b

Âλ =

(
1
2

λ− 1
2

λ− 1
2

1
2

)
, b =

(
1
0

)
= |0〉

Consider that the hybrid HHL algorithm is applied to the linear equation, Âλx = b where
λ = 1/4, 2/4, 3/4 for 2-qubit register. By undergoing a repeated QPE algorithm beforehand,
we are able to obtain a probability distribution of its measurement outcomes. The probability
distribution can give insight to the eigenvalues of Âλ such that,

Pr(j0) =
1

16
e6πiλ(1 + e4πiλ)2((−1)j + e2πiλ)2, for j = 0, 1

From the probability distribution for the measurement outcome, it is also possible to obtain
the knowledge that Âλ is perfectly 2-estimated where the matrices Â1/4 and Â3/4 have fixed

eigenmean m̄2 = 1 and the matrix Â2/4 has fixed eigenmeans m̄1 = 1, m̄2 = 0. Using the
knowledge of eigenvalues and eigenmeans, they are able to implement a reduced AQE part
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Figure 4: Hybrid HHL algorithm circuit [12]

for the reduced HHL algorithm. In the case of Â1/4 and Â3/4, the AQE parts to be used are
controlled-unitary operation

|0〉A |0〉r1 → (
√

1− c2 |0〉A + c |1〉A) |0〉r1

|0〉A |1〉r1 → (

√
1− c

3

2

|0〉A +
c

3
|1〉A) |1〉r1

and the AQE part for matrix Â2/4 is given by a single-qubit unitary operation.
By performing the reduced HHL part based on the reduced AQE parts, the normalized

solution of the linear equation in the qubit system V is obtained. This hybrid algorithm is able
to solve the linear equation given that the matrix Âλ is perfectly n-estimated and has fixed
eigenmeans. The experimental results for a 2x2 system on IBMQX4 is shown in Figure 5. The
hybrid algorithm with reduced HHL was able to give a slightly better result compared to the
original HHL as seen in Figure 5 where the probability obtained by reduced HHL is closer to
the theoretical value compared to the original HHL.

Another quantum hybrid algorithm for linear systems of equations is proposed by Perelshtein
et al. (2019) [13]. This hybrid algorithm, referred to as the Hybrid UC QLSA, has been imple-
mented on a fairly large scale where it has been able to experimentally solve a 217-dimensional
problem on IBM Quantum which is a record as of yet. Based largely on the previous hybrid
algorithm by Lee et al. (2020) where it takes the advantage of the fact that some bits of A−1

eigenvalues could be the same for any eigenvector. The proposed hybrid algorithm alters the
QPE part in HHL by introducing correcting single qubit gate Uc which produces an exponential
speedup instead of the original U2j [13].

Generally, this hybrid algorithm uses a lesser number of qubits for the phase register as
compared to the original HHL algorithm which would make the circuit less complex as the
width and depth of the circuit decreases. The construction of the operator Û = eiA is expressed
as a tensor product of local operators. The physical operators Û are divided into three groups:

TP1: ÛTP1 is the tensor product of single-qubit gates which does not entangle qubits.

TP2: ÛTP2 is the tensor product of two-qubit gates which leads to the emergence of entangled
two-qubit clusters.

NTP: ÛNTP is not a tensor product of single-qubit or two-qubit gates which entangle all
qubits.
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Figure 5: Experimental results from IBMQX4. (a) QPE algorithm with 2-qubit register. (b)
the original HHL algorithm and reduced HHL part. [12]

Figure 6: Hybrid quantum linear solver algorithm circuit with single qubit gate Uc [13]

Consider a 2x2 linear systems of equations, the paper tries to solve the system by investi-
gating all operators of differing matrix types, ÛTP1 , ÛTP2 and ÛNTP on four IBM-Q machines,
Burlington (5 qubits), Yorktown (5 qubits), Melbourne (15 qubits) and Johannesburg (20
qubits). Consider the system of linear equations,(

1
2
−3

8
i

3
8
i 1

2

)
x =

(
1
0

)
By running through the hybrid algorithm, the normalized solution is encoded into a pure

single-qubit quantum state |x〉 = 4
5
|0〉 + 3

5
e−iπ/2 |1〉. The density matrix ρ obtained through

full state tomography is shown in Figure 7(a) where the solutions are able to be approximated
with high precision and fidelity. Figure 7(b) shows the fidelity of the algorithm with only NTP
matrices, averaged over 70 NTP matrices for varying circuit widths. It shows relatively similar
fidelity with respect to width of the circuit for the first three quantum processors with the same
quantum volume, VQ = 8 while the fidelity for Johannesburg with VQ = 16 is slightly higher
for corresponding widths.

The paper goes on to consider a large-scale implementation of the hybrid HHL algorithm.
However, since full state tomography for a large-scale system requires 3n experiments for n-qubit
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Figure 7: (a) Density matrix of the 2x2 linear system solutions where the dashed squares
represent the noiseless solution, solid squares is the solution obtained and the colour blue and
red represent positive and negative values respectively. (b) The fidelity of the hybrid algorithm
circuit averaged over 70 NTP matrices. [13]

circuit, the tomographical fidelity is not reliably attainable for this scale. A cross entropy that
estimates the fidelity based on single Z-projective measurement which gives us the probability
distribution of outcomes. The fidelity is defined as,

FXEB =

∑M
j=1(p

e
j − pu,ptj)∑M

j=1(p
t
j − pu,ptj

)

where pej and ptj are the probability distribution of outcomes for the noiseless implementation
and experimental run of jth circuit respectively while pu is the uniform probability distribution.
This cross entropy fidelity shows the averaged proximity of the obtained projection of vector to
the ideal solution. Another approach in a metric to measure the algorithm is the digital error
model (DEM) which is essentially the product of the fidelity of readout errors, single-qubit
gates and two-qubit gates. However, this metric failed in predicting the hybrid HHL algorithm
performance due to correlation errors for experiments conducted on real IBM-Q machines.

Figure 9 shows that the measured fidelity is independent of the matrix types used in (b)
and (d). While DEM can be useful in predicting simulations, it is not useful in predicting
experimental results as gate errors are correlated. In this work, they are able to experimentally
implement a quantum linear solver algorithm that finds the quantum state projection corre-
ponding to the solution of a 217 × 217 system of linear equations, which is as of now, a record
in quantum linear solving problems for a gate-based quantum processing unit.

The third hybrid classical-quantum algorithm is devised specifically for Noisy Intermediate
Scale Quantum (NISQ) machines by Chih-Chieh Chen et al. (2019) which outlines three main
issues with existing HHL algorithms and its improvements: the input and output are in quantum
states, loading data and Â is non trivial and expensive and it is inefficient in getting classical
solution via tomography [14]. This hybrid algorithm, from now on will be referred as the Hybrid
QW QLSA, is based on the quantum random walk (QRW) algorithm where only Â is encoded
in quantum registers. Vectors b and x are classical and hence it solves one of the big contending
issues in the complexity of loading and unloading data into quantum states. Â is encoded using
Hamming cube structure – a square matrix of size N requiring O(logN) qubits where QRW
takes O(logN) to obtain a component of x.

The Hybrid QW QLSA considers the usual linear system of equations in the form of Âx = b
where Â is rewritten as a combination of identity matrix and a Markov chain transition matrix
with a variable γ, Â = Î − γP̂ . We will not go deeper into the intricacies of this algorithm as
it is non-trivial and not of our focus in this study. As in Figure, since the algorithm is able to
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Figure 8: (a) The fidelity obtained on a simulator based on the noise profile of Melbourne for
3 different matrix type. (b) The experimental results measured on Melbourne. The same type
of measurments are done on Johannesburg in (c) & (d). [13]

yield the classical solutions of the linear equations, they are able to observe the relative error
of the solutions which generally goes lower as the sampling number increases.

Figure 9: Relative error of the classical solution with respected to the prediction as a function
of the sampling number on simulators and IBM-Q Tokyo. [14]

Across the three implementations of hybrid QLSA, all of them are able to output the solution
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|x〉 to varying degrees. Only the third implementation, Hybrid QW QLSA via quantum walk
was able to retrieve the classical solution for the linear systems whereas the others would need a
completely different algorithm, state tomography algorithm, to obtain their classical solutions.
It would be inaccurate to compare them side by side as each of the algorithms differ quite
significantly in its methodology and no definite big O notation and complexity are given in the
papers. However, we are most interested in the first two hybrid algorithm, Hybrid Reduced
HHL algorithm and Hybrid UC QLSA which are based on the HHL algorithm. The Hybrid
Reduced HHL algorithm by Lee et al. (2020) are devised and implemented for small scale
implementation while the Hybrid UC QLSA has the capability to be applied to larger scale
problems nonetheless, only the former documented a concise implementation of the algorithm
that will be of use for us in our study.

4 Variational quantum linear solver (VQLS) algorithm

Recently, a variational approach for solving quantum linear system problems proposed by Bravo-
Prieto et al. (2020) has been demonstrated to perform well in noisy intermediate-scale quantum
(NISQ) computers up to 1024 × 1024 problem size (10 qubits) [15]. The Variational Quan-
tum Linear Solver (VQLS) utilizes variational quantum eigensolver to solve linear equations.
The output yielded by this algorithm is similar to the original HHL algorithm however the
algorithm takes the advantage of its variational nature allowing it to be executed on current
NISQ quantum machines and reducing the complexity of the algorithm by utilizing classical
optimization.

Figure 10: A schematic overview of the variational quantum linear solver (VQLS). [15]

Based on Figure 10, the input of the algorithm is the linear combination of unitaries Al and
a quantum circuit, U which prepares the state |b〉. The cost function, C(α) will be estimated
via an ansatz V (α) with parameters α in a quantum-classical loop. The cost function, C(α)
quantifies how much the component Â |x〉 is orthogonal to |b〉. The value of the cost function is
then returned to the classical computer to adjust a new value of α via optimization algorithm to
continue reducing the cost. Once the cost reaches the desired threshold, the optimal parameters
αopt will be passed through the ansatz, V (αopt) to form |x〉.

There are two reasonable cost functions discussed in the paper – the global cost function
CG and the local cost function CL. However, the global cost functions show a plateau as the
number of qubits n increases. Figure shows that as n increases, it gets harder for the global
cost function to optimize. The local cost function for 50 qubits shows significantly better result
in its optimization hence making local cost functions better for large scale implementations.
The ansatz V (α) are chosen to be a fixed hardware ansatz for convenience as the structure of
the ansatz is fixed and the optimization is done over the varying α.

Figure 12 shows the implementation on Rigetti’s quantum hardware for a problem up to
1024× 1024 size. As observed the cost function obtained by training in the quantum computer
are very close to the values obtained from a simulator. The value of the cost function approaches
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Figure 11: Comparison between global cost functions and local cost functions for different
number of qubits n with constant κ = 20. [15]

near zero value which indicates a good solution to the linear system however due to noise present
in the quantum computer the cost does not go to zero. To guarantee a precision of ε, the cost
must be lowered as the condition number increases. This will require more iterations of the
variational hybrid classical-quantum loop to achieve. Essentially, this variational approach
replace the gate complexity of the usual approach in exchange for the number of iterations for
a fixed circuit depth. Since this is essentially a different algorithm altogether from the HHL
algorithm, we will not go much further than this.

Figure 12: Implementation of VQLS on Rigetti’s quantum hardware. The global cost function
CG is polotted against the number of optimization steps. [15]

5 Conclusion

In this report, we have looked at the difference between the general quantum linear solver algo-
rithm, hybrid quantum linear solver algorithms and variational quantum linear solver (VQLS)
algorithm and their implementations on circuit based quantum computers. This review acts
as a precursor in finding a reliable algorithm for linear solving that could be implemented on
a large scale and using NISQ machines for further works in implementing least squares data
fitting algorithm that will be largely based on some variation of QLSA.
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Among the implementations that we have analysed, our main focus is on the algorithms
that are based on the original HHL algorithm – the general QLSA and hybrid QLSA. The latter
shows a lot more usability in that one of the hybrid algorithm, the Hybrid UC QLSA are able
to be implemented for large scale problems as opposed to the more general QLSA which are
limited by the circuit complexity and current quantum computers. Of the hybrid algorithms
mentioned in Section 3, the first two, the Hybrid Reduced HHL algorithm and Hybrid UC QLSA
could prove to be useful provided we are able to implement them. While VQLS has proved to
be able to be executed on current NISQ machines, the sheer difference between its variational
approach to the conventional HHL algorithm has made it difficult for us to consider them as
most of the data fitting algorithms we have looked at are largely based on HHL algorithm.
However, VQLS is still highly reliable on its own for linear solving problems.

The problem here on lies in the reconstruction of the algorithms in IBM-Q as there are
limited documentation and guides given in the literature for the hybrid algorithms. Recon-
structing and implementing these hybrid algorithms by ourselves would be beneficial in helping
us to understand the subject matter and will help in preparing for our next step in understand-
ing implementations of least squares and linear regression algorithms in circuit based quantum
computation.
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