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ARTICLE INFO ABSTRACT

The Wireless Sensor Network (WSN) is a promising technology that could be used to moni-
tor rivers’ water levels for early warning flood detection in the 5G context. However, during
a flood, sensor nodes may be washed up or become faulty, which seriously affects network
connectivity. To address this issue, Unmanned Aerial Vehicles (UAVs) could be integrated
with WSN as routers or data mules to provide reliable data collection and flood prediction.
In light of this, we propose a fault-tolerant multi-level framework comprised of a WSN and
a UAV to monitor river levels. The framework is capable to provide seamless data collec-
tion by handling the disconnections caused by the failed nodes during a flood. Besides,
an algorithm hybridized with Group Method Data Handling (GMDH) and Particle Swarm
Optimization (PSO) is proposed to predict forthcoming floods in an intelligent collabora-
tive environment. The proposed water-level prediction model is trained based on the real
dataset obtained from the Selangor River in Malaysia. The performance of the work in com-
parison with other models has been also evaluated and numerical results based on differ-
ent metrics such as coefficient of determination (R?), correlation coefficient (R), Root Mean
Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and BIAS are provided.
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Prediction

terconnected dynamic nodes such as Unmanned Aerial
Vehicles (UAVs) that are enabled by the Internet of
things (IoT) technology. This development could be
also empowered by forwarding collected data to the
cloud through UAVs, and managing it using Software
Defined Network (SDN) to quickly and reliably detect
and locate unexpected events. In order to minimize
manufacturing costs, wireless sensor nodes are gener-
ally used in monitoring areas and are self-organized
into WSNs to collect environmental data. However,
the awareness of location information in the cloud is
important for real-time event detection. Hence, the
UAVs can serve as mobile anchors to assist localiza-
tion, and as mobile relays to transfer data from sen-
sor nodes to the cloud. Several works have recently
been proposed in the literature to address data collec-
tion from sensor nodes using UAV [5, 34].

The advantages of integrating UAVs with WSNs
for flood prediction are highlighted as follows: (i) Each
node can send its data to the associated UAV by a single-
hop transmission to the base station which reduces the
energy consumption of the WSN; (ii) the accuracy and
timeliness of the river flow predictions could be im-
proved by the use of UAVs to provide real-time lo-
cation information; (iii) the scalability of the network,
limited by the low energy of the nodes, would be en-
hanced and the nodes could be distributed over long

1. Introduction

Effective river flow prediction is required to reduce
the damage caused by potential surges. Various tech-
niques have been proposed such as surge forecasting,
river training (i.e. taking structural measures toreduce
the flood flow velocity), real-time alerts, stormwater
predictions, and emergency management [16].

The 5G network provides high peak data rates with
low latency and massive network capacity that would
be very useful in flood management. In this regard,
a great deal of attention has been paid to the use of
Wireless Sensor Network (WSN), one of the enabling
technologies in 5G networks, for river monitoring and
flow predictions. However, there are some key short-
comings in the standalone use of WSN[16]. The main
concern is that some nodes could be destroyed or be-
come damaged due to the success of the flood.

Hence, given the multi-hop nature of WSNs, such
failure could put an end to the whole routing process
if the failed nodes are network bottlenecks. Alterna-
tively, such failures could also result in poor Quality
of Service (QoS) and/or increased energy consump-
tion due to increased re-transmission of unsuccessful
packets.

Therefore, due to the above issues as well as a lim-
ited coverage and computation capability of WSNs,

standalone WSNs are progressively merged with in-

*Corresponding author
B4 m. anisi@essex. ac.uk (M.H. Anisi)

distances to cover the river.
UAVs were used as relays [5, 11] to improve com-
munication in WSNs. UAVs were leveraged as mobile
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sinks within ubiquitous sensor networks to improve
the connectivity of the ground sensor nodes. The de-
ployment of wireless sensor nodes was investigated
in post-disaster environments [34] using a quadrotor
equipped with Inertial Navigation System (INS) and
Global Positioning System (GPS) sensors.

There are others researches focused on UAV-assisted
WSN for developing new sensing applications [35, 6]
and for modeling effective mobility patterns for data
collection [8, 13, 33]. The goal of another study [8] was
to deploy micro-UAVs at various locations in a disas-
ter area to rapidly generate communication networks
for search and rescue operations. In this work, UAVs
will fly close to the ground to capture high-resolution
images of disaster sites. Interface protocols have also
been established to easily manage large groups of micro-
UAVs. Although various works such as [35, 6, 8, 13,
33] have discussed the integration of WSNs and UAVs,
to the best of our knowledge, no study considers UAV
as a gateway or data mule for WSN to optimize flood
prediction [3]. On the other hand, previous works have
ignored the impact of the dynamic topology of UAVs
on integration with WSNs, which is difficult to control
during the deployment stage. Therefore, this paper
aims to design a real-time UAV-assisted WSN model

to mitigate the number of packets lost to destroyed /faulty

nodes during the flood and to provide accurate flood
predictions. In the proposed air-ground network model,
the WSN monitors the river and reports the water level
to the central processing unit (i.e. the base station).
When a node fails to transmit its data via multi-hop
communication, a UAV is called to bridge the commu-
nication and send the data to the base station.” Wire-
less sensor nodes are deployed at the edge of the ur-
ban river to monitor water flow behavior during times
of flood or prolonged rainfall, and UAVs are adapted
for wireless data collection from the sensors. In or-
der to optimally use the UAV and efficiently control its
topology, the disaster area is divided into several sub-
regions by the cloud and the center of each sub-region
is considered as the hovering point of the UAV. Then,
the sensor nodes are grouped into these sub-regions
according to the received signal strength (RSS) of the
detected beacons. In each sub-region, packets are for-
warded based on a random walk process to collect the
data of sensor nodes. If the packet returns to the start-
ing node with an expected time of ¢, it can be deter-
mined that there is a failure and that the UAV is func-
tioning as a relay and forwards the next packet to the
cloud.

The main contributions of this paper are threefold:

* We propose a framework for real-time data col-
lection based on a multi-hop WSN and a UAV in
which the UAV as a router relays the data pack-
ets of the sensor nodes when they fail to find any
available node as the next hop.

* We integrate cloud and SDN to manage network
connectivity across the data center and simplify
the dynamic programming process. we divide
the disaster area into several sub-regions, and
the random walk model is used by the UAV to
collect data of each sub-region, including nodes
IDs and neighbor tables in sub-regions. Then,
the collected data will be forwarded to the cloud
empowered by SDN for flood prediction.

* We propose a novel prediction model for pre-
dicting floods. Once river flow data is transmit-
ted to the central prediction unit, integrated Group
Method Data Handling (GMDH) with Particle
Swarm Optimization (PSO) is used to forecast
floods.

The rest of the paper is structured as follows. Sec-
tion 2 discusses the related works on the topic. In Sec-
tion 3 we provide a statement for the considered prob-
lem, whereas in Section 4 we outline a multi-level net-
work model. Section 5 presents the prediction model,
whereas Section 6 explains the results. Section 7 illus-
trates the discussion. Finally, conclusions and future
directions of the paper are given in Section 8.

2. RELATED WORK

Although several works integrated UAVs and WSNSs,
it should be stressed that none of them make use of
UAVs to enable higher-resilience WSNs during flood
prediction or make evaluations based on real data.

Concerning quick learning for UAV navigation tasks,
some previous works typically emphasize accurate meth-
ods for components such as perception and relative
pose estimation [3] or trajectory optimization and con-
trol [28]. UAVs can support various wireless commu-
nication protocols. For example, UAVs can commu-
nicate with WSNs in a self-organized way by ZigBee
modules [30], and have the ability to serve as relays
to forward data to the cloud [21]. In [7, 25, 37], re-
searchers explain that there are multiple ways to man-
age UAVs to form a network to cover all sensors, whether
the sensors are directly connected to the base station,
or whether the relays can be used to increase the range
of communication. But there is no explicit analysis
when the sensors are disconnected from the base sta-
tion for some time.

Recently, machine learning models have been used
to analyze and assess linear scattering coefficients as
strong alternatives to traditional regression models in
natural rivers. These models include Artificial Neural
Networks (ANNSs), Genetic Programming (GP), Adap-
tive NeuroFuzzy Inference Systems (ANFIS), and Sup-
port Vector Machines (SVM) to evaluate the longitudi-
nal dispersion constant [2]. Among these techniques
is the GMDH that is a self-organizing method with
non-linear network models. It uses a combination of a
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quadratic polynomial in a multi-layer procedure [23].
Many recent algorithms such as GMDH networks have
been able to perform accurate predictions, especially
the river water stage prediction. The GMDH networks
were a quick learning machine planned by Ivakhnenko
in the 1960s. This method is a heuristic self-organizing

algorithm that develops inductive self-organizing strate-

gies to solve a lot of complicated and sensible issues.
The GMDH networks have been applied in engineer-

ing sciences, fault detection, ranking, and selection mod-

eling, and chemical action [15, 22].
The GMDH networks provide effective and effi-

cient technical performance in various engineering fields

[22], but their training suffers from certain disadvan-
tages such as local minimum and slow convergence.
Therefore, selecting an applicable training model is one
of the paramount steps within the development of a
data-driven model. This study adopted the PSO tech-
nique [15] to train GMDH networks for river predic-
tion models. The developed model is a hybrid method
for one-day-ahead prediction of river water where a
non-linear regression approach is adopted due to the

complex process of river flow prediction in natural rivers.
It is evaluated in simulated networks in Malaysia, where

some other neural network-based models, including
DE, GA, and ANN, are also tested for comparison. Re-
cently, GMDH networks were used to forecast scour
depth around hydraulic structures [22]. It has out-
performed standard non-linear regression methods in
prediction processes. They build analytical functions
inside feedforward networks within quadratic poly-
nomials. The weight coefficients of these quadratic
polynomials are the result of regression technique ex-
ploitation [14]. The effective forecasting technique for
river water stages would minimize losses from flood-
ing exploitation due to the prediction of what people
close to the river need. [18, 26]. Some limitations of the
GMDH technique include slow convergence in train-
ing, imprecision in parameter assessment, overfitting,
the partition of information, and low accuracy. There-
fore, a hybrid version of GMDH was planned to con-
siderably boost its performance. Robinson and col-
leagues [27] presented a Multi-Objective GMDH (MOG-
MDH) algorithm within a consistency criterion that
used three different selectors within the choice pro-
cedure. This significantly improved the performance
of the GMDH algorithmic program. Hiassat et al.[9]
proposed the Genetic Programming-GMDH algorith-
mic program, which applies genetic programming to
discover the simplest functions that can map inputs
to outputs for every layer of the GMDH algorithmic
program, and they presented a model that achieves
better results than the standard GMDH algorithm in
time series predictions using financial and weather in-
formation. Genetic Algorithms (GAs) have recently
attracted attention in feedforward self-organizing net-
works. In this study, neuron connections are controlled

to adjacent layers [24].

The lack of effective training algorithms for train-
ing multi-layer perceptron is an important issue in GMDH
networks. In recent years, some data-driven improve-
ments to training algorithms such as Back Propagation
(BP) [10], Levenberg-Marquardt procedure [17], and
scaled conjugate gradient procedure [20] have been used
to perform training tasks. Usually, gradient-based meth-
ods have some drawbacks, such as slow speed con-
vergence during training and getting trapped in local
minimums. The PSO algorithm can perform training
tasks for ANNs that may be applied in hydrologic en-
vironments. The PSO method optimizes complicated
numerical functions and was initially developed to model
social behavior [15]. Additionally, it is recognized as
an evolutionary method under the field of computa-
tional intelligence [4, 31]. So far, several prediction ap-
proaches have been proposed. However, none of these
approaches has taken into consideration the effect of
data collection by UAVs for river flow prediction along
with the PSO algorithm for training the GMDH model.
We made a comparison to prove the novelty of the pro-
posed model. The comparison with the state of the art
is provided in I. The table presents the proposed mod-
els that used UAVs for data collection from the sensor
nodes using UAVs.

3. Problem Statement

3.1. Communication gap caused by faulty
nodes

In WSN-based flood monitoring approaches, nodes
might be destroyed or get faulty during a flood that se-
riously affects the network connectivity. To overcome
this issue, UAVs could be deployed to act as routers
or data mules to fill the network communication gap
caused by the inactive nodes. UAVs relay packets from
the isolated nodes and enable continuous flood mon-
itoring. In our UAV-assisted data collection mecha-
nism, the WSN is modeled as an undirected graph as
follows:

Let G = (V;E) be a simple connected and undi-
rected graph, where V and E represent the vertex and
the edge set, respectively. In the WSN, the sensor nodes
n and the wireless communication links m are mod-
eled as vertices and edges, respectively. The set of ver-
tices is represented as V = {v1, vy, v3, ..., vy } and set of
edges E = {e1,ep,¢€3,...,en } is expressed as the wire-
less communication links. The degree(v;) represents
the degree of a vertex and shows the number of valid
neighbors of a sensor node. The value of degree(v;)
may change during the flood prediction process, due
to the destroyed nodes. Also, the Valid neighbors are
defined as nodes with valid wireless communication
capability. Furthermore, we assume that each node
possesses the information of its neighbors in a table
that includes the connectivity status, neighbor node
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Table 1
Comparison with the state of the art.

Model Faulty nodes mgt

Data collection Topology mgt Data prediction

De Freitas et al. [5]
Tuna et al. [34]
Valente et al. [35]
Erdelj et Natalizio [6]
Hauert et al. [8]
Jawhar et al. [13]
Sun et al. [33]
Skoczylas [31]

Shaw et Mohseni [30]
Mozaffari et al. [21]
Goddemeier et al. [7]
Pinto et al. [25]

Yu et al. [37]
Najafzadeh et Sattar [23]
Najafzadeh et al. [22]
Kalantary et al. [14]
Proposed model

® O OO OO O O0OO0OO0OO0OO0OO0OO0o0OO0OO0o0OO0

® O OO @@ 06060606 06 00 0 0 0 o
® O OO0 @0 @ ® ®§ OO OO OOOO
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IDs and the radio signal strength indicator (RSSI) be-
tween the nodes. Matrix C shows the connectivity sta-
tus between the nodes as follows:

_J1 if e(v;,v)) exists
Coy; = {0 otherwise (1)

According to the matrix, if e(v;, v]-) exists, the vertices
v; and vj can communicate. Otherwise, If there is no
possibility for wireless communication between v; and
vj, the UAV nodes is called to collect data from the
node.

To solve this problem, the sensornodes are grouped
into N sub-regions by the cloud using a number of

beacons with known locations. Each sensor node records

all the detected beacons, and selects the certain sub-
region based on the highest RSS of the beacons’ sig-
nal. Then, the random walk process is applied for
propagating data on a connected graph with n ver-
tices and m edges at the sub-regions. Given K sen-
sor nodes in a sub-region, the distance matrix is de-
fined as D and the location of the first UAV hovering
point is expressed as mly and while the UAV moves
to the mth location, the distance matrix is defined as
mly,,. With m recorded locations, the collected data of
K sensor nodes can be predicted through the proposed
flood prediction model in Section V.

3.2. Flood prediction

More formally, we can denote an environment and
the sensors nodes within it by a tuple e = (S,G, P, T),
where S = {S; | i =1, - - - K} is the set of K sensor nodes,
G = (V; E) where V and E represent the vertex and the
edge set, respectively and encodes the layout of the
physical environment between locations V. To each lo-
cationv € V we assign two spatial coordinates (xy, ).
So, we can denote the distance between two locations

V,v as |v= 0|, Pis a spatial phenomena that is mon-
itored by the sensorsin S, and T = {t1,, - - -} models
time as a sequence of discrete timesteps of unknown
length. 'To measure the performance of the sensors,
we utilise the root mean squared error (RMSE) of their
predictions. In order to do this we denote the predic-
tions that the prediction unit makes based on collected
data from sensors at time f by P; = {p{ | v € V'}. Sup-
pose the actual measurements made at those locations
are A; = {aj | v € V}, then the objective of the predic-
tion model is.to coordinate all nodes movements so as
to minimise for all timesteps t € T:

ai — p})?

RMSE(P;, Ay) = \J Loev( 7

2)
Formally, the RMSE can be considered of as a qual-

ity measure of the situational awareness the sensors

nodes achieve, since it measures the difference between
the measurements of the sensors, and the actual values

of the phenomena in the environment. We chose this

measure because it has been used in related work to

ascertain the accuracy of sensor predictions.

4. Proposed multi-level architecture

Here, the details of the suggested architecture are
explained. The proposed network model is an adapt-
able and scalable model with multiple applications.
The model was designed with three layers. In the cloud-
SDN layer, a centralized SDN controller was defined
as the main control entity and the central processing
unit for action predictions. The SDN controller linked
the ground WSN and UAV. The second layer included
UAVs operated on-demand, with progressive sensors
and communication. The third layer covered ground
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WSNs with scalar sensors such as rainfall sensors and
water level sensors. Fig. 1 shows the network model
and the key components of the cloud-SDN, UAVs, and
sensors. The main components of the suggested frame-
work are presented in detail.

4.1. Cloud-SDN

A communication network is an important compo-
nent of the flood control system. With the integration
of advanced technologies and applications for achiev-
ing smarter controlling of rivers, a vast amount of data
from different locations will be generated for analysis,
update, control, and real-time flood predicting meth-
ods. Thus, the management of these networks is the
main challenge due to the scale. Moreover, the equip-
ment may not be able to exchange information due to
heterogeneous devices and applications. Hence, it is a
vital issue to find the best communication infrastruc-
ture to control and manage all devices throughout the
total system, considering the real-time constraint. In
this model, cloud computing-based SDN is a good so-
lution to the aforementioned problems, thanks to the
following advantages. Cloud technology offers high
computing capacity to flood prediction utilities. More-
over, flexible per-flow routing is possible using SDN
and the flow can be defined across multiple network
layers. Also, a logically centralized controller can im-
prove the service efficacy of flood prediction. Also,
due to the programmability of SDN, the network is
made more active and an appropriate radio access in-
terface can be selected for data delivery. Last but not
least, quick-response cloud service is essential for river
monitoring on the basis of the real-time road condi-
tions.

4.2. UAVs

Generally, UAVs as aerial agents refer to active ob-
jects with behavior, state, and location, which are au-
tonomous and mobile. They can move freely with state
and code in execution without suspending services,
provide better asynchronous interaction, reduce com-
munication cost, and enhance flexibility. For greater
geographical distances where ground nodes are infea-
sible, UAV-based systems can be integrated. UAVs
collected data from the sensing targets and transmit-
ted the collected data to the ground control station or
terrestrial user equipment. Various reasons have been
provided for the use of UAVs in the proposed net-
work model. The main reason is that the employment
of UAVs will lead to lower traffic over the wireless
channel. Also, in comparison to traditional network
forwarding, the reliability of the path will be signif-
icantly improved as the numbers of hops will be re-
duced where packets are diffused in the network over
multiple hops. The direct communication, where the
UAV collects data from each sensor node, is used for
data acquisition.

4.3. WSNs

The ground control station was configured for data
analysis and to control management operations. Ground
data was distributed between ground control stations
and UAV communication nodes. Sensor nodes are flex-
ible network elements that deliver (real-time) collected
water level data to the central processing unit. How-
ever, considering the extremely large area and numer-
ous working scenarios involved in flood control, it is
impossible to manage floods without using UAVs as
detection tools. These were generally controlled from
the ground control station.

5. Prediction Model

In this section, the methodology for flood predic-
tion using UAVs along with a PSO algorithm for train-
ing the GMDH model is described.

5.1. GMDH Approach

The GMDH method has various stages. The first
stage involves partitioning data into training data and
testing data. This division is based on consecutive heuris-
tic selection points in the data set. Also, this parti-
tioning is obtained by calculating the variance of data
from the mean value. Points should have high vari-
ance and be employed in the testing data set for model
checking, outside of the data in the training set. In
the second step, input data for the input matrix was
chosen in pairs and, between each pair, a quadratic
polynomial was taken with the corresponding output.
The least-square fitting [36] is used to set the poly-
nomial coefficients. To verify polynomial’s suitability,
the outputs of the polynomials were evaluated using
data points in the testing data. Mostly, Mean Squared
Error (MSE) was used to select suitable polynomials
for the next layer. Finally, this process was repeated
until the smallest MSE was higher than the previous
layer. A suitable data model was obtained by trac-
ing back the polynomial path with the smallest MSE in
each layer. The GMDH method relies on self-organizing
methods for the assessment and estimation of record-
ing machine models with uncertain variable relation-
ships. GMDH networks use a regression based on the
Ivakhnenko polynomial [12] as follows:

=
M=
=

Il
—_
.
I
—_

M M M
Yy =ap +Zaixi +ZZLZ1']‘XI'X]‘ +

where M is the number of input variables,
(x1,x2,x3,--+,xp) are the input variables; and

) are the coefficients. Generally, Eq.(1)

AijkXiXjXg (3)

Il
—_
Il
—_
-
Il
—_
Il
—_

J

ao, ai, Ajj, Aijk, *
is the quadratic form of the two variables shown in
Eq.(2):

Y =ag+a1x; +ax; + asx;x; + a4xi2 + 115x]2 4)
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Cloud empowered by SDN

N UAVs

Ad-Hoc
Communication

Movement
Trajectory

Downlink
Transmission

Uplink
Transmission

————

Figure 1: Proposed Multi-level Architecture.

Collect regression-type data
of N-observations

Construct the regression
polynomial

Data Division }—
1

Order new variable according Eliminate the least effective Evaluate the polynomial at all
to the least square error variables N data points

I

Test for convergence

I

If
least square error
< last min

Use the results for the
previous minimum value

) O]

Stop the process

Figure 2: GMDH structure.

The configuration of the GMDH model employed
in this study is presented in Fig. 2.

5.2. PSO Algorithm

The goal of the PSO scheme designed by Kennedy
and Eberhart was to rehabilitate social interactions be-
tween agents in order to solve non-linear continuous
optimization issues [15]. PSO is an advanced search
technique for non-linear function optimization that self-
resembles the motion of agents in a bird flock. Parti-
cles refer to the available solutions to a problem. Parti-
cles have efficient cooperation and competition in their
generational evolution. In this context, all particles
control fly concerning the flying experiences of them-
selves and their neighbors. PSO is capable of discover-
ing the global optimum with a high convergence rate.
The PSO trainer used in this paper originated from the
idea that PSO can boost the convergence behavior of

particles by accurately selecting weighting parameters
instead of randomly choosing them within a typical
interval. Thus, PSO was adopted for training multi-
layer perceptrons where matrix learning problems are
restricted.

5.3. The proposed hybrid GMDH-PSO
algorithm

The usual version of GMDH has some shortcom-
ings that need to be addressed: (i) how to train two-
layered high-precision networks; (ii) how to specify
the best number of input variables; (iii) how to choose
a polynomial order to form a vector solution in ev-
ery node; and (iv) how to select input variables. This

study focused on these issues using the proposed GMDH-
PSO model.

5.3.1. Using PSO in the training process
It is apparent from previous sections that the GMDH

method has some limitations in the training process.
Hybridization of the PSO model with standard GMDH
can solve this problem. In this application, a three-
layered perceptron was chosen. PSO was used to train
the GMDH network. Initially, the fitness function of
every particle was determined. The error function at
current particle positions was evaluated to determine
the fitness value of every swarm particle. Also, fitness
values were determined on the basis of the particle
position vectors corresponding to the network weight
matrix. In this hybrid technique, all training data was
set to the GMDH network. Then, the weights of each
data set were updated such that the size of the train-
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Initialize velocity, position, pbest,
gbest, maxparticles

If err (particle) < e(particle;
YES O
Tf_Particles< maxparticles
e(particle)=err(particle) update pbest

vis
1

If i <training data [ Update Velocity, Position

vis l

xo - N
de(particle)=err(particle) minerror = min(e), Update gbest with
Values corresponding to minerror

update pbest
err(particle)= mse (error) ]7 @

Figure 3: Architecture of the proposed SDN-EC framework.

ing set was equal to the number of updated weights.
The vector of each particle was selected to show their
error vector. This vector stored the minimum errors
encountered by each particle due to their input pat-
terns. This value shows the Mean Square Error (MSE)
during training. The flowchart procedure for training
a GMDH network using PSO is given in Fig. 3.

Weight training was used for the following reason:
W1 shows the weight matrix between the input layer
and the hidden layer; W? denotes the weight connec-
tion matrix between the hidden layer and the output
layer. The i-th particle of a PSO in multi-layer percep-
tron training is denoted as follows:

wi = (W), w?) (5)
For every particle, the former best fitness value was

defined to present the position of the particle as fol-
lows:

1771

jo (P~1 P?") (6)
The best particle index among all the particles in

the population is shown by b and the best matrix is
presented by:

By = (B}, ) @)

The particle velocity i is denoted by

vi= (v, v?) ®)

The formula for particle manipulation in each iter-
ation is presented as follows:

‘/i []](m, 7’1) — ‘/l[]](m, Tl) + (1’0( [Pl[]](m, 7’[) _ WZ[]](WZ, 71)]

+5p [Plgj](m, n) — W,Ej](m,n)D /t
)

where m and n denote matrix rows and columns, re-
spectively; v and s are positive constants; ¢ is the time
step between observations and is commonly taken as
unity; « and  are random numbers from 0 to 1; V and
W refer to the new values.

"I _ sl [j]
W =W+ vt (10)

where j = 1,2, m = 1L,...,M;n=1,...,N; M, and
N; are the rows and column sizes of the matrices W, P,
and V. Eq.7. was utilized to compute new particle ve-
locities based on its previous velocity and the distance
of its current position from its best experience and the
best experience of its group. Then, a new position ac-
cording to the new velocity is determined using Eq.7.
Also, Eq.8 was used to determine the fitness of the i-th
particle in terms of an output mean squared error of
the neural network as follows:

1 S [O

f) =5 ), [E {te — pu (Wi)}zl (11)
k=1 |I=1

In the above equation, the fitness value is f; the tar-

get output is t;; the number of output neurons is O;

the predicted output according to W; is py;; the num-
ber of training setis S.

5.3.2. Region and Data Description

Hydrographs offered daily water level records from
Selangor River via http:/ /infobanjir.water.gov.my. The
Selangor River is the main river in Selangor, Malaysia.
It runs from Kuala Kubu Bharu in the east and flows
into the Straits of Malacca at Kuala Selangor in the
west. The data presented through this website were
suitable indicators of potential flooding or landslides.
This study utilized the data from this website with dis-
cretion. This study extracted online hydrograph data
for three stations—Selangor, Selayang, and Bernam—on
the Selangor River. According to the existing hydro-
graphs on 27 December 2018, the average water level
measured by Stationl was about 48.72. These values
were about 37, 44, and 21 for Stationl, Station2, and
Station3, respectively.

5.3.3. Data normalization

The water levels data set at the Selangor river were
predicted over one and two days based on measured
daily levels. Data normalization was done to avoid
false patterns that can be created by inconsistencies.
The dataset had some variations because the collection
devices were located in different time zones and geo-
graphical locations. Data were normalized by divid-
ing the total daily water levels by the number of hours
within that day. The normalized data series were com-
puted as:

/Dy

D, = =L

(12)
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Figure 4: Construction of polynomials by PSO.

where Dy is total daily water level, D; is the normal-
ized data, and H; is the number of hours in the i-th
day.

5.3.4. Construction of polynomials by PSO

Particles were used as search agents in the PSO.
The grouping of input variables from the previous layer
was determined on the basis of the position of each
particle. This data was then moved to the next layer.
Every particle contained three main parameters: P;
,P, and P;. P; was defined as a polynomial order. In
this context, the polynomial order was created from
the previous layers and generated randomly. For sim-
plicity, this study took 2 in each layer.

However, this value can be either 2 or 3. The num-
ber of input variables was generated randomly and
was obtained from the previous layer. We defined D
and 7 = 2 as the width of the input dataset and the de-
fault lower bound, respectively. The number of input
variables was P, € [1,r], where r = min(D, 5).

The position of every particle representing tall can-
didates in the current layer of the network was P; =
{a € Z*|1 < a < D}, which is a sequence of integers.
These three parameters were used to arrange nodes to
move to the next layer.

Py, P,, and P; were used to determine the polyno-
mial order, the number of node groupings, and the
whole sequence, respectively. Fig. 4 shows the pro-
cedure for the three defined parameters used to form
the polynomial. In our hybrid model, three parame-
ters were used to create the polynomial and all parti-
cles consisted of separate parameter sets. Generated
polynomials were employed as an objective function
for PSO.

5.3.5. Framework of the GMDH-PSO

The GMDH-PSO framework is comprised of six main

steps:

First, the input variables of the system were deter-
mined. The primary population of PSO structures and
corresponding learning parameters c; and ¢, were cre-
ated. The input variables of the model were defined as
x; (i=1,2,3,---,n) and were related to output vari-

able y. Then, the normalization of input data was com-
pleted. In both experiments, the original data needed
to be normalized to generate equivalent water level
data. In the second phase, training data for PSO and
testing data was formed. The input-output data set
(xi,y;) = (x14, %21, -+, Xpni, i), 1=1,2,3,- -+ ,n was di-
vided into a training and testing dataset. The size of
the training and testing dataset were represented by
ny and 1y, respectively, where n = ny +14.. The train-
ing dataset was employed to construct the GMDH-
PSO model. The testing dataset was utilized to eval-
uate model quality.

In the third phase, the primary information that
would be used to construct the GMDH-PSO structure
was determined. Note that the previously mentioned
process determined the model’s structural optimiza-
tion by PSO variation operators. In this context, we
defined the maximum number of generations as the
termination method to balance model accuracy and
complexity. The maximum number of input variables
was used. for every node in each layer. Moreover, the
value of the weighting factor was determined for the
aggregate objective function.

In the fourth phase, the Polynomial Neuron (PN)
structure was determined using the PSO algorithm.
Theleast-square technique was used for parameter op-
timization through multiple-regression analysis. This
technique was used to provide the formula to com-
pute coefficients. The objective function, which was

the main instrument used to control evolutionary searches

in the solution space, was defined based on the follow-
ing generated polynomial:

=a + + +
f (X1,x2) = a1 + axy + azxo + agx1 X2 (13)

+ a5x% + a6x%

where a1,4ay,- -+, a4 are the constants assessed using
the training dataset. The formula used to compute co-
efficients was obtained using the least-square method
in the following formula: a = (x! )71 xty.

In the fifth phase, if the current structure was the
best, the model proceeded to phase 6, otherwise it re-
turned to phase 3. This procedure was repeated for all
nodes at all layers (from the input layer to the output
layer).

In the sixth phase, if an acceptable solution was ob-
tained, then the algorithm was stopped, otherwise the
model returned to step 2. The GMDH-PSO algorithm
was carried out by consecutively repeating steps 2-6.
When the termination condition was met, one solution
vector with the optimum performance was selected in
the last population generation as a solution vector and
all remaining solution vectors were rejected. The pseu-
docode of GMDH-PSO is represented in Algorithm 1.
Also, Fig. 5 shows the GMDH-PSO model.
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Algorithm 1: Pseudo-code for GMDH-PSO

1 Input: Maximum number of input variables,
number of particles, original data,
size of training dataset, the maximum number of
generations, value of the weighting factor
and number of iterations;
Output: Output variable, predicted data
Create the primary population of PSO
Create learning parameters C1, C2
Normalization (input-data)
Training-dataset =

{(i,yi) = (enis X4y - -+ Xnis Yi) 41 =

1,2, , 1,
Testing-dataset =

{(,yp) = (erjy X2, -- Xy Y o7 =

1,2, nge
ny = size of training dataset
nte = size of testing dataset
=Ny + Ny
10 Define Particles =

{par1(P11, P12, P13), - - -, parm(Pu1, P2, Pi3) }

11 Generate Polynomial by (PSO(Particles))
12 if the current structure is the best then
13 | go tonextstep

[=)}

o o 3

14 else
15 | gotoLinell

16 if solution is acceptable then
17 | gotoEnd

18 else
19 | gotoLine6
20 End
e . Determine polynomial neuron (PN)
Data Collection structure using PSO design
Determine the system’s input A better structure
variables is found?
i YES NO
Form training data by PSO and ~ Best solution
form testing data ) is found?
Determine initial information VES

for constructing the GMDH-

PSO structure

)

Figure 5: Construction of polynomials by PSO.

6. Results

The GMDH-PSO network was compared with ear-
lier models such as DE [19], GA [29], and ANN [1]
and the results are presented in this section. In these
comparisons, the main indicators for prediction errors
were calculated for model evaluation [32]. Table II
presents 48 river level values over 24 hours from these

Table 2
Sample of observed data of water level
No Time Selangor Selayang Bernam
(Station 1)  (Station 2)  (Station 3)
1 00:00 31.67 44.40 21.58
2 00:30 31.65 44.76 21.85
3 01:00 31.66 44.85 22.05
4 01:30 31.66 45.10 22.15
5 02:00 31.75 45.15 22.10
6 02:30 31.75 45.40 22.09
7 03:00 31.74 45.20 22.10
8 03:30 31.55 45.70 22.10
9 04:00 33.65 45.90 22.10
10 04:30 31.70 46.15 22.10
11 05:00 31.70 46.18 22.10
12 05:30 33.65 46.23 22.10
13 06:00 31.64 46.20 22.08
14 06:30 31.62 46.18 22.10
15 07:00 31.58 46.24 22.12
16 07:30 31.57 46.10 22.16
17 08:00 31.55 46.12 22.17
18 08:30 31.58 46.14 22.17
19 09:00 31.62 46.19 22.19
20 09:30 31.68 46.25 22.20
21 10:00 31.65 46.30 22.25
22 10:30 31.70 46.25 22.20
23 11:00 31.90 46.15 22.27
24 11:30 32.35 46.02 22.33
25 12:00 32.40 45.85 22.38
26 12:30 32.36 45.50 22.40
27 13:00 32.05 45.63 22.40
28 13:30 32.45 45.40 22.44
29 14:00 32.85 45.20 22.50
30 14:30 33.15 45.05 22.50
31 15:00 33.17 45.20 22.49
32 15:30 33.15 45.20 22.45
33 16:00 33.15 45.22 22.45
34 16:30 33.05 45.22 22.39
35 17:00 32.80 45.25 22.35
36 17:30 32.75 45.22 22.33
37 18:00 32.53 45.20 22.30
38 18:30 32.45 45.20 22.30
39 19:00 32.50 45.25 22.25
40 19:30 32.20 45.20 22.20
41 20:00 32.10 45.18 22.18
42 20:30 31.70 45.10 22.10
43 21:00 31.50 44.90 22.10
44 21:30 31.95 44.85 21.90
45 22:00 32.15 45.70 21.85
46 22:30 32.40 45.55 21.78
47 23:00 32.80 45.60 21.70
48 23:30 32.02 45.55 21.68

three stations.This study used the correlation coeffi-
cient R, RMSE, and BIAS data for accuracy evaluation
in the training and testing stages as follows:

M
R LHAB
\ 42t

(14)
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Table 3
Accuracy of the obtained results
Models R RMSE BIAS
GMDH-PSO, training phase 0.964 0.167 4.82
GMDH-PSO, testing phase 0.895 0.240 4.11
GA [29] 0.876 0.356 276
DE [19] 0.868 0.378 -3.56
FFBP-NN [1] 0.789 0.465 -3.83
the DE and GA models. The ANN-based model was
used for evaluation analysis. This study developed a
M (Y- viodets — YiOriaimal )2 2 Feedforward Backpropagation (FFBP) model for water
RMSE = | ==L\ {Modeh) — 7iOriginal (15)  levelprediction. In this model, it was assumed that the
M proposed network had three hidden layers and that
each layer had four neurons. This study found that the
FFBP-NN technique had more accurate predictions with
sM (Y' Y ) RMSE = 0.465 and BIAS = -3.83 compared to the DE
BIAS = =" i(Model) — *i(Original) (16) model. Although, the FFBPNN model, compared to

M

where M refers to total events,A = Yjoiginat) —

Yi(original)s B = Yi(Model) — YiModer), and Yipodery are net-
work outputs that refer to the predicted values, Y(poge1)
refers to the mean of the predicted values, Yjoriginan
was target data that showed the observed values, and
Y(Original) was the mean of the observed values.

The results for the statistical parameters show that
the GMDH-PSO model was in good agreement with
previously published methods. Also, the model ob-
tained a precise prediction for the training phase. The
values of R and RMSE were equal to 0.96 and 0.167,
respectively. BIAS showed good precision in GMDH-
PSO training equal to 4.82.

The R and RMSE values were equal to 0.96 and
0.167, respectively. BIAS (equal to 4.82) showed good
precision in GMDH-PSO training. The obtained val-
ues (R = 0.89, RMSE = 0.24, and BIAS = 4.11) proved
the high performance and efficiency of the proposed
model during testing. Table V displays the results of
the proposed model for the training and testing phases.
In comparison, the R values from the testing phase
were not significantly different from those for the train-
ing stage. On the contrary, BIAS and RMSE were no-
ticeably improved parameters. Table III indicates the
accuracy of the obtained results.

A comparison of the GA and DE models was per-
formed for GMDH-PSO. The results showed that the
appearance of the GA technique was more accurate
than that of the DE model. The values for RMSE and
BIAS were equal to 0.356 and -2.76, respectively, for
the GA model, and 0.378 and -3.56, respectively, for
the DE model. The BIAS for the DE model is smaller
than the GA model, but the RMSE for the DE model
is very similar to the GA model. Our proposed model
showed better results in terms of BIAS compared to
the DE and GA models. The GMDH-PSO model ex-
hibited RMSE values approximately 20% lower than

the GA model, obtained more errors. In total, the GMDH-
PSO model showed shows slightly better performance
than the GA model in terms of accuracy. The predicted
and measured data of Station 1, Station 2, and Station
3 for the proposed models are shown, respectively, in
Figures 6,7, and 8.

6.1. Performance of GMDH network using BP
training and PSO training
This section outlines the performance evaluation of
GMDH-PSO and GMDH-BP during the training and
testing phases. Model evaluation statistics were MAPE
(Mean Absolute Percentage of Error), R, RMSE:

1 | EM [Yivtodery — Yicorigina)
X

MAPE = — 100
M

Y™ Yioriginan
(17)

whereas predicted value network output is Yjaoder),
average predicted values are Y(yjo4.1), Observed values
are Yj(original), average observed values are Y(oyiginar),
and M is the total number of events. The training phase
shows that the use of the PSO model as a trainer of the
GMDH network provided better performance than the
use of a back-propagation algorithm. The R values
for the GMDH-PSO and GMDHBP models were 0.97
and 0.86, respectively. The RMSE for GMDH-PSO and
GMDH-BP were 0.167 and 0.24, respectively. The MAPE
values were 0.113 for the GMDH-PSO model and 0.215
for the GMDH-BP model. The GMDH-GP model had
a complicated structure because of the creation of tree
structures in each neuron, making this procedure very
time-consuming.

The testing phase indicated that GMDH-PSO had
better performance than GMDH-BP in terms of accu-
racy. This study used the remaining data sets for test-
ing performances. The R value for GMDH-PSO was
0.96 and the GMDH-GP model was 0.87. The RMSE
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Figure 6: The plots of GMDH-PSO

model predicted versus actual values for training,

testing and all data sets for Station 1.

and MAPE for the GMDH-PSO model were smaller
than the GMDH-BP model. Table III shows the com-
parison results.

7. Simulation validation

In this section, we discussed some experiments con-
ducted to demonstrate the accuracy of our proposed
model, and the obtained results were analyzed. These

UAV-WSN modules, which were simulated with the
OMNET++ tool. In our system, each sensor directly
communicates with the UAVs to save energy and de-
crease the end to end communication delays. This study
assumed that the active sensor nodes would commu-
nicate with UAVs if they were within the range of the
beacon signal. Furthermore, the slept sensor node did
not communicate if the beacon signal was weaker than
the threshold or the beacon signal was not available.

experiments were conducted to implement self-developed During data collection, this study assumed that each
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Figure 7: The plots of GMDH-PSO model predicted versus actual values for training,
testing and all data sets for Station 2.

active sensor could periodically transmit sensing data
to the UAVs. Table IV shows all the parameters used
in our simulations and two sets of valuations.

To perform competition experiments, this study car-
ried out different experiments under different experi-
mental conditions. In the first experiment, every sen-
sor node always transmitted a packet between the client
and the server. In the second experiment, UAV carried
out routing and packet switching between the source
node and destination node. In this experiment, if a

sensor node failed, former sensor nodes could not send
their data to the sink node. By employing UAVs, the
data collection was possible throughout the WSN, which
sent data to the central processing unit for river pre-
diction. In this context, performance evaluations were
evaluated with two response variables: Round-Trip
Time (RTT) delay and packet loss rate. RTT refers to
how long it took for a packet to be sent back and forth
from the source to the destination. Packet loss rate
refers to the ratio of packets lost in the test to the data
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Figure 8: The plots of GMDH-PSO model predicted versus actual values for training,
testing and all data sets for Station 3.

groups sent during transmissions. Besides, each ex-
perimental result is the average of the 30 runs for each
simulation scenario. The 95~ confidence interval (CI)
has been calculated for the collected performance met-
rics. To this end, the parameter values used in this
study are shown in Table V. These values were care-
fully selected to reflect realistic scenarios.

7.1. Experiment 1: Without UAVs

In this experiment, data packets were spread across
multiple hops to the sink node, meaning that river data
and WSN were sent to the base station directly or via
other sensors. In this experiment, communication per-
formance was better for direct communication. It was
assumed that the communication range of sensor nodes
was less than the threshold distance. Each sensor node
could decode a direct message from its nearest neigh-
bor in the second time slot [12].
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Table 4
Comparison results using GMDH-PSO and GMDH-BP
Training Testing
Models R RMSE MAPE R RMSE MAPE
GMDH-PSO 0.97 0.167 0.113 0.96 0.240 0.215
GMDH-.BP 0.87 0.21 0.25 0.87 0.26 0.56
Table 5 node problem was addressed. In this study, UAVs
Summary of simulation parameters were used as data mules that collected data from the
Parameter Value WSN and sent it to the processing unit. The exper-
Area of the sensor 400x4000 (m2) iment used UAVs flying at distances between 40 m
The UAV's altitude 50-200 m and 90 m with various antenna gains (3 and 10 dBi)
Number of sensors 500-4000 and a set communication rate (9600 b/s) and trans-
RF frequency 2 (GHz) mission power (10.dBm). Figures 9 and 10 show the
SNR 15 (dB) results of these two experiments. The two sets of ex-
Speed of UAV 10 (m/s) periments were simulated thirty-five times, and the
Transmission bit rate of sensor 25 kbps Shapiro-Wilk normality test was used to test the nor-
Path loss between the UAV and sen- 2 mality of experiment sets. This study’s simulations
Sors were organized based on channel access time, which
Packet for channel access 5 bytes .
Data packet length 5.200 byte is when sensor nodes can only access one channel ata
Transmission range of sensor, R 20 m time. Channel access was conducted in consecutive
Data transmission interval 2 time frames to minimize packet loss and each time
Channel access Frame random access frame was composed of a specific number of times-
Number of particles 100 lots. The size of each timeslot varied and was suffi-
Number of variables 7 cient for-a sensor to transmit its information and be
Omega 0.05-0.09 acknowledged by the UAV. In each frame, the sensor
Maximum iteration 500 randomly chose a timeslot to negotiate with the UAV.
Error _ 0.00001 Essentially, every node randomly chose a timeslot and
Weighting coefficients 02 asked for authorization from the UAV. If a sensor node
€1 and C2 2.5 received a positive reply, then it waited for its trans-
mission turn. In this case, the node stopped demand-
Table 6 ing timeslots. The response was comprised of the ex-
Set of primary factors in two experiments act time when the node had connectivity to the UAV.
Experiments Antenna gain Distance When all the sensors had a given timeslot and com-
Without UAV 3 dBi 40 pleted their channel access, the UAV started the com-
10dBi 40 munication process.
3 dBi 60 The experiment results showed that UAVs can im-
10 dBi 60 prove the data collection and provide a reasonably well
3 dBi 90 depiction of remotely sensed environments. Compared
) 10 dE" 90 with the existing efforts [19, 29, 1, 32], the main advan-
With @AV i (jﬁg' 40 tage of this study is to design a UAV-WSN model for
30 dBiI 28 river flow prediction.
10 dBi 60
‘I’Od?éi gg 8. Conclusions and Future directions

7.2. Experiment 2: With UAVs

In this experiment, each sensor directly communi-
cated with UAVs. These sensors were found to save
energy. Moreover, the delay in end-to-end communi-
cation was reduced. This study constructed a mod-
ule in the central processing unit to manage commu-
nications between UAVs and WSNSs. In our prototype,
UAVs acted as a bridge for routing messages to in-
crease signal range. Consequently, the fixed sensor

This study used UAV remote sensing for scenarios
where a sensor node is unable to send data packets in
multi-hop communications to provide robust WSNs.
The usage of UAVs can improve the accuracy of water
level predictions to prevent floods. Experiments tested
data collection performance with and without UAVs
for river monitoring. This study’s UAV-WSN model
proposed the hybridization of the PSO and GMDH
models for water level predictions. To validate the pre-
cision of the developed GMDH-PSO model, its perfor-
mance was compared to the DE, GA, and ANN mod-
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Figure 9: Results (a) and (b) of round-trip time (RTT) delay

els. The GMDH-PSO method outperformed the other
models. The statistical indicators used for the perfor-

mance evaluation of the proposed model indicated lower

RMSE and higher R and BIAS compared to the GA
and DE models for all nodes. Also, this study com-
pared GMDH-PSO and GMDH-BP during the training
and testing stages. The outcomes showed that MAPE
was lower in the GMDH-PSO model. Results under-
lined the ability of GMDH-PSO to predict non-linear
time series data. For future works, this study recom-
mends the use of other techniques to predict river wa-
ter levels such as reinforcement learning.

In future research, to improve the computation ser-
vices while reducing the latency, we plan to apply edge
computation (EC). Additionally, we will consider fore-
cast of different environmental phenomena, such as
urban underground drainage or rainfall-flow.
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