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Abstract: The development of intrusion detection system (IDS) model to classify various types of attacks was  

proposed in this study using Support Vector Machine (SVM) with binary tree hierarchical arrangement. This IDS 

model was developed to classify NSL-KDD dataset into one of the five main classes: Normal, Probe, DoS, U2R 

and R2L. The main performance measure for IDS is the ability to classify multiple attack classes and achieving 

low false alarm rate. One-versus-One or (OVO) method is a popular method used in solving multi-class problems. 

However, the main problem of multiple classes using OVO techniques is the level of ambiguity, which receive 

the same number of votes as well as the detection was done barely in surface level without considering other 

conditions. This hierarchical method tests at each level using different SVM classifiers. The SVM, originally a 

binary classifier, was developed for multi-class classifier. Pre-processing methods involve are mapping 

attributes, preparing data in SVM format, normalization and feature selection. The SVM hierarchical method is 

proposed based on the highest value of the test model between the OVO binary class method, one-to-all (OVA) 

binary class as well as multiple OVO classes. The order of the model is determined by the priority of order from 

higher to lower according to the level of detection obtained from all experiments. At each level of the hierarchy, 

one class is removed and classification is resumed for the remaining classes using the next classifier. By 

comparison it was proven that using multi-class hierarchical model was able to provide average accuracy up to 

90.98% compared with 41.01% for standard multi-class model (OVO). The number of false alarm rate also 

decreased from 5.77 for standard multi-class model compared to 0.5 for hierarchical multi-class model. 

Keywords: Support Vector Machine, Intrusion Detection System, Hierarchy classifier, NSL-KDD. 

 
1.0 INTRODUCTION 
Intrusion Detection System (IDS) is an important tool used with other components in network defense. The 
significance of IDS is to identify threats in the network whether the risks are coming from external or internal 
threats. According to Veal (2005), the activities observed by IDS include suspicious activities such as 
unauthorized access attempts, manipulations and disruptions of computer system capabilities performed by 
intruders such as viruses, worms, probes, attacks and abuse of systems program (Nguyen et al. 2012). Lee and 
Stolfo (2000) also emphasize that IDS needs to be the exact system, able to adapt and expand its use to 
systematically and automatically regulate the network. According to Panetta (2017) network security experts 
agree that the main focus should change from avoiding threats to detection and response. 
 
IDSs are built using signature-based or anomaly-based detection (Lee and Stolfo 2000; Alma 2012; Cheng & Syu 
2015). Signature-based detection identifies through the attack pattern found in IDS database while anomaly-
based detection is based on profile of attack built. Any match will enable alerts by IDS and appropriate actions 
will be performed based on the settings. The signature-based IDS model works just like a virus detection program 
that identifies suspicious activity based on a match in the database. The signature-based IDS model able to 
identify the attack accurately and promptly but has difficulty on detecting activity other than the existing match 
which eventually increase the false positive rate. Meanwhile, an anomaly-based IDS model has the advantage of 
identifying an unknown attack but having difficulty building a suitable model for legitimate activity due to an 
increase in the level of false warnings especially from unique legitimate activities. 
 
There are several methods used in the development of IDS. One of the method was based on network host 
information study such as the time user’s access the system and what resources user retrieved. A simple 
statistical method can be performed to check user activity type whether it matches the model in the database. 
The disadvantages of this method are human activities are uniques and significantly changes. The focus was 
changed from the user type to the set of user’s behavior. While IDS based on network information is more focused 
on packets sent in the network rather than a set of human behaviors. The information sent is more concise and 
involves between host connections and servers for example network flow such as the number of packets sent, 
number of bits being exchanged and so on. 
 
Due to its ability to identify an unprecedented attack, an anomaly-based IDS model becomes the choice of 
researchers. In 1980, James P. Anderson was studying ways to improve computer security and monitoring at user 
locations (Bruneau 2001). His research uses account audit file to detect unauthorized access. He then suggested 
that a model be constructed from the user's normal behavioral statistics so that 'impersonators' with different 
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behavior from the normal profile can be detected. His study has pioneered the initial steps of the construction 
of intrusion detection and developed the original idea of anomaly detection. The development then booming 
with combination of various techniques such as statistics including Bayesian analysis, as well as data mining (Lee 
& Stolfo 2000). Lee & Stolfo (2000) builds the IDS framework using data mining algorithms to calculate activity 
patterns from audit data system and extract predicted features based on the pattern. To enhance the IDS 
learning capabilities, machine learning (ML) techniques are also used to transfer the role of detection from 
human to the system. 
 
In order to get good results, this study focuses on multi-class classification methods for network data that has 
multiple simultaneous attacks at a time. A quality IDS will be able to detect various types of attacks and not 
only focusing on common and popular attack types. Plus, if the attack type is small in quantities, a reliable IDS 
should be able to detect these types of attacks like U2R, a dangerous attacks. There are two standard methods 
of multi-class testing which is One-versus-One (OVO) and One-versus-All (OVA). This two main methods in 
classifying class are (a) taking into account all the data in an optimization like OVA or (b) constructing multiple 
binary classifiers like OVO (Vural & Dy 2004). The main issue of multi-class data is that uneven data numbers 
can affect detection accuracy as larger amounts of data dominate the final decision. Given that the problem is 
still persistent, this study aims to get better detection rate methods for multiple attack classes. 
 
In order to obtain a system that has zero dependency on humans, IDS anomaly gives many advantages over 
signature (Singh & Nene 2013). This study focuses on anomaly-based IDS. The detection will consider all attack 
classes in NSL-KDD data set. There are many methods that have been proposed for IDS anomaly but according to 
Horng et al. (2011) the decision tree has been proven to have good performance. Next, SVM is an effective ML 
method and is capable of giving accurate results compared to other methods (Li et al., 2011). SVM is also easier 
to use than neural networks (Hsu et al. 2010). 
 
Although the OVA method is a popular method, it experiences some heuristic problems (Bishop 2006). First, the 
value of trust gained can vary between binary classifier. Secondly, even if division between classes is balanced 
for training data, binary classification learning is still able to see disproportionate divisions because the negative 
set is usually greater than the positive set. The OVA method also has a weakness especially for data that has 
small amount in numbers like U2R. Large amounts of data will usually dominate the decision. Meanwhile, through 
the OVO method, many classes will take time as many cross-tests are needed before the exact model is obtained. 
In addition, the detection is done particularly on the surface only and no involvement of any other condition to 
consider. The OVO method also faces ambiguity problems where some input space areas are likely to receive 
the same vote (Bishop 2006). The same number of votes will make the decision making more difficult. 
 
Next, this study focuses on addressing the problem of OVO standard classification through the construction of 
multi-class hierarchical classification. The combination of binaries and SVM in each level of hierarchy is guided 
by the strategy to get the decision by filtering one by one class at each level. Filters in each level helps 
classification produces accurate results. Each attack class will be tested with an SVM classifier according to the 
hierarchical multi-class with order of priority. 
 

2.0 Machine Learning Method Application In Classification 
There are various ML techniques applied in building of IDS models such as Support Vector Machine (SVM), Random 
Forest and Bat Algorithm (BA). Enache and Sgarciu (2015) propose an anomaly-based IDS model that has a pre-
processing phase for feature selection using information obtained while for detection using SVM classifier. This 
study used the advantages of Swarm Intelligence (SI) algorithm, the Bat (BA) algorithm. The model constructed 
then tested on NSL-KDD data sets of 9566 records and is divided into two files namely training and testing. Better 
results were obtained by comparing with other methods with 99.15% detection with a false warning rate of 
0.019. This study also states that the SVM algorithm deficit is dependent on the correct parameter input from 
the user. 
 
Hence Hasan et al. (2014) builds two types of classification models that are first based on SVM and the second 
based on Random Forests (RF). Experimental test results show that both models are effective. SVM gives more 
precise classification than RF but are time consuming. While RF is capable of delivering similar results to SVM, 
it is actually will be much faster if the parameters of the model are supplied. The set data used is KDD'99 that 
has been cleared from redundant data so that the classifier does not lean over to the frequent record. RF 
technique produces many classification points. Each tree is constructed with a different sample of the original 
data using the classification tree algorithm. After the forest is created, an object to classify will be placed for 
each tree. Each tree will then cast vote class for the object. The highest voting is the final result. For the SVM 
model, the RBF kernel is selected and the grid search technique is used to get the best model. The accuracy of 
the SVM model is 92.99 compared to 91.41 for RF. The time taken by RF is 10.62 minutes compared to 44.14 
minutes for SVM. 
 
 
 

Cop
yri

gh
t@

FTSM



PS-FTSM-2020-002 

 

 
2.1 Support Vector Machine 
For the purpose of this study, SVM was selected as machine learning (ML) techniques. The ML method using 
Support Vector Machine (SVM) has been selected based on its ability to properly and accurately detect the 
attack. SVM is a learning algorithm derived from statistical learning theory (Calix & Sankaran 2013; Schwenker 
2000). SVM is one of the popular and useful ML methods for data classification (Hsu et al., 2010) developed by 
Cortes and Vapnik (1995) for use in solving the pattern detection problem besides the nearest neighbor classifier. 
SVM has been recognized as the State-of-the-Art, a modern and latest tool in classifying applications in pattern 
recognition (Mohd Rizal Kadis 2016; Azizi Abdullah 2010; Boswell 2002; Cortes & Vapnik 1995) and texts, 
handwriting recognition and bioinformatical analysis (Pervez & Farid, 2014). This algorithm is used to perform 
binary classification or classification of two SVM classes, but is easily developed for multi-class classification. 
MSV is a classification technique that involves data division into two sets of data ie training and testing (Azizi 
Abdullah 2010). SVM's main idea is to define the optimum separation space of hyperplane as the dividing line 
separates Class +1 from Class -1 by maximizing the largest margin between the two closest points (Calix & 
Sankaran 2013; Azizi Abdullah 2010). Hyperplane is built with the boundaries specifying the data entered. The 
points that are at the boundary are known as the supporting vector and the midline between the margins is the 
optimal line of hyperplane. Figure 1.1 shows margin position, hyperplane and support vector. 
 

 
 

Figure 1.1 Margin, hyperplane and support vector position in SVM 
 

SVM's original concept is to separate the hyperplane between two separate classes in a straight line (linear) 
where a class is labeled negatively (-1) while the opposite class has positive label (+1). The best hyperplane is 
by getting the maximum thickness of the margin; the boundary distance between the two classes. Schwenker 
(2000) states that the greater the margin, the higher the ability to generalize for the separation of hyperplane. 
 
2.2 Parameter Optimization  
The parameter optimization process is able to improve classification performance. There are two methods used 
to get parameter optimization that is grid-search and cross-validation verification. There are two parameters 
needed for the RBF kernel; C and γ values. The value of both is unknown before the test runs however there is 
a way to get the best value for both of these parameters. The use of grid-search to get the value C and γ using 
cross-validation techniques is recommended. In the k-cycle cross-validation technique, the training data is 
divided into the same subset of k (Hsu et al. 2010). Subsequently, a subset is tested using a classifier which has 
been tested on the remaining k-1 subset. Therefore, the prediction for each data in the entire training data is 
performed and the percentage of cross-validation is accurately categorized. The cross-validation process avoids 
overfitting problems, which is a model error that occurs when a model attempts to make an accurate guess at a 
limited set of data points.It is important to tuning parameter C to ensure the best step in the SVM that minimizes 
the structure’s risk. Grid-search search is a traditional method of determining parameter optimizations that 
perform individual searches to completion by subset of the predefined parameters of the chosen learning 
algorithm. For SVM classifier using the RBF kernel there are two main parameters that need tuning in order to 
produce good performance for unknown data C and γ parameters. Grid-search then trains MSV with matching C 
and γ so it achieves the best classification performance. 
 
Cross-validation is used to obtain the expected performance of a model's generalization by selecting the best 
parameter. Among the main purposes of cross-validation are (a) as a testing technique that will give results that 
are not favorable to any expectation of generalization which may result in overfitting. Next, it is also (b) a step 
to choose the appropriate model. The parameters obtained (the best value of C and γ) will be reused for the 
training data model. Next, the model obtained will be used on test data. In cross-validation, the data set is 
divided into random k-fold numbers by the same amount. If the value of k = 10. Training data is randomly broken 
into 10 subsets. A subset is set as a test set while the remaining nine subsets are considered as training data. 
The cross-validation process is repeated ten times and the accuracy of the classification is measured by the 
average of the test results (Li et al., 2012). For LIBSVM, there is a grid.py program that performs a grid-search 
best training parameters for the set of vector feature supplied. The program also uses cross-validation 
techniques to anticipate the accuracy of any combination of parameters on a certain scale and thus help select 
the best parameter. 
 

hyperplane 

Support vector 
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2.3  Classification using SVM 
For classification using SVM, there are two types of classification namely binary and multi-class classification. 

a. Binary classification 
This method is used when there are only two classes for the data. Classifier attempts to classify unknown data 
to two groups. However, this binary classification can be expanded to multiple classes for example one-versus-
one or one-versus-all test if there are more than two classes exists in the dataset (Azizi Abdullah 2010). 

b. Multi-class classification 
If there are multiple classes in a dataset, it is important to classify the N Class data to its correct class. There 
are four methods identified for this classification as per below: 

i. One-versus-One (OVO) –For this approach, it uses maximum votes and each one is differentiate with 
two types of class (Azizi Abdullah 2010). The number of classes is calculated based on formula N (N-1) 
/ 2 class model. For example, if N = 5, the number of class models is 10. Each model is trained with +1 
for the actual class and -1 for the otherwise. The data set is tested on each model and the most voted 
class is considered a winner. The difference with OVA model is that more models need to be built and 
the performance measure is via maximum draws by considereing the results from all models. However 
the amount of records selected only for the class involved and does not require all classes for each 
binary test. According to Li et al. (2008) OVO provides better performance if accurate classification is 
produced. The disadvantage of this method is when the number of classes is too large. For example, if 
N = 20 then the binary class number to be trained is N (N-1) / 2 = 190. The following Figure 1.2 shows 
the OVO concept for multi-class. 

 

 

 

 

 

 

 

Rajah 1.2 Konsep satu-lawan-satu. 

Sumber: Gu et al. (2016) 

ii. One-versus-All (OVA) – in contrast to the OVO approach, this method uses the "winner-takes-all" 
strategy (Azizi Abdullah 2010). This means that, if N = 5, the number of class models is five, which is a 
model for each class (Li et al. 2008). Each model will be tested with the test data set and the class that 
gives the highest classification result is considered the winner. The OVA method takes long training 
times and often the rate of accuracy it produces is lower than OVO. Figure 1.3 gives an overview of one-
versus-all concept. 
The pseudocod of the learning algorithm for OVA constructed from binary L classification is as follows: 
Input: 

 L, is a learner (binary classifier learning algorithm) 

 sample X 

 label y where yi ∈ {1, … K} is the label for the sample Xi 
 Output: 

  list fk  classifier for k ∈ {1, …, K} 
 Procedure:  

  For every k in {1, ..., K} 

  Build a new vector label, z where zi = 1 if yi = k  and zi = 0 or 

  Use L to X, z to get fk 
Decide to match all the classifier to a new sample X and predicts for the label k for which each      
classifier states the highest value of confidence: 

 
 
 

 

Input 

1 vs 2 2 vs 3 1 vs 3 

Maximum vote 
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Expected Class 
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Figure 1.3 One-versus-all concept 
Source: Gu et al. (2016) 

 
iii. Hierarchy or binary tree SVM – is a different method for solving N-Class problems is by constructing a 

hierarchy or binary classification tree (Schwenker 2000). Using this method, multi-class classification 
problems are divided into a series of SVM binary classifier classes arranged in a hierarchy. The 
arrangement method is root node at the top while the terminal node (leaf) is at the bottom. Each class 
is presented using the leaves and each node is categorized using binary classification. Li et al. (2008) 
states the constructed hierarchy must be correctly designed before classification training is carried out. 
Figure 1.4 shows the general method of hierarchical classification. 

 

 Figure 1.4 General method of Hierarchy classfication 
 Source: Schwenker (2000) 

 
iv. Directed acyclic graph SVM (DAGSVM) or open graph without SVM cycle :- is a hierarchical binary 

architecture in which DAG is used to combine the value obtained from different one-versus-one classifier 
introduced by Platt et. al (2000). For N class problems, a number of N (N-1) / 2 binary classifier are 
trained. DAGSVM relies on DAG binary root to make a decision. When the test sample is approaching the 
leaf node, the final result as shown in Figure 1.5. The binary testing depends on the number of nodes 
contained in the decision path. According to Wang and Casasent (2006), at each node, one class is 
excluded from the list. 

 

Figure 1.5 DAG make decision for 4 Class where binary classifier (SVM) is used in each 
node 

Source:Platt et al. (2000) 
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3.0 METHODOLOGY 
In this study, there are four main activities conducted. Figure 1.6 below shows the activity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure Error! No text of specified style in document..6  Summary of Methodology  

a. Step 1: Data Collection 
The data to be tested is NSL-KDD dataset. This data is used to detect intrusions and is provided from earlier 
certified data ie KDD Cup '99 (Chen & Syu 2015). The NSL-KDD data has been upgraded from the original data 
where some improvements like redundant data cleaning. This data contains 41 features and 1 label. The data 
structure and features are similar to KDD Cup 1999 datasets. There are 5 main data classes which is 1 normal 
and the remaining 4 are attack data. 
 
b. Step 2: Pre-processing and Feature Selection  
The data will then undergo the initial process of data preparation to the appropriate format. An attribute 
mapping process will be performed to convert the data in alphabetical form into numeric form. Next, convert 
the data into SVM format and normalization will be implemented in this step. For the purpose of getting 
prominent features, the data will go through SVM test to get the number of conforming features in the next 
experiment. Three feature sets, 13 (network features), 15 (host features) and 41 (overall) features are provided 
for this test. Next, the number of features with the highest accuracy results will be used. 
 
c. Step 3: Development of Classification Model  
There were several experiments carried out for the development of classification model. Experiments were done 
through the LIBSVM program using the RBF kernel. Standard multi-class models OVO and OVA will be developed 
and tested through multiple experiments to get the order of priority for attack class. Detailed description of the 
process carried out in the experiment will be described in the next step. Based on priority order, a multi-class 
hierarchical classification model is built. Construction of multi-class hierarchical models will be carried out after 
experiments using LIBSVM compared to the methods used by Horng et al. (2011) which is using a hierarchical 
algorithm before testing with MSV. 
 
d. Step 4: Test Result 
Hence, comparative tests between standard class classifier (OVO only) and multi-class hierarchical will be 
implemented to identify which methods give accurate detection and lower false alarm levels. Classification of 
multi-class hierarchical conducted is tested to obtain the conclusion whether the technique affects the level of 
accuracy in order to improve detection performance. Calculation and comparison processes are provided for 
both models. Conclusions were made to summarize the findings obtained during the study. 
 
3.1 Performance Metrics 
To measure the performance level of the model developed in this study, performance measures need to be used. 
The main reason for the use of measurements is to obtain standard results and able to make comparisons of 
learning algorithms developed with methods used by other researchers (Azizi Abdullah 2010). For the purposes 
of this study, the model performance is tested through the accuracy (K) level, the detection rate (P) and the 
false warning (AP) achieved (Mohd Rizal Kardis 2016, Parsaei et al 2016). The developed models are formed using 
the appropriate probabilities to ensure all factors are taken into account. Models that provide high detection 
results are considered to be a better model than others. However, the value of AP needs to be lower before the 
model is considered good and appropriate. 
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Table 1.1 shows the confusion matrix as pillar to calculation construction to obtain K, P level and AP. The 
performance of the model is presented visually through a confusion matrix. The confusion matrix is the square 
matrix and the number shown in the diagonal is the exact classification number and otherwise the wrong 
classification. The confusion matrix read is through columns and lines, for each column is the expectation while 
the line represents the actual category of data. Through it, according to Azizi Abdullah (2010), one of the 
benefits of using a confusion matrix is it is easy to see which class is accurately detected and vice versa by 
classifier. 

 
Table 1.1 Confusion Matrix  

 

 

Category 

Expectation 

Normal Attack 

A
c
tu

a
l Normal  TP  FP 

Attack FN TN 

 
For the purposes of abbreviations in Table 1.1 are as follows: 
• True Positive (TP) is the original value is true and successfully detected as true 
• True Negative (TN) is the original value is false and successfully detected as incorrect 
• False Positive (FP) the original value is true but detected as false 
• False Negative (FN) the original value is flase but detected as true. 
  

Accuracy Level (K) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3.1) 

 
    

Detection Level (P) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.2) 

   

False Alarm (AP) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (3.3) 

 
Based on the precision level equation (K), derived based on the number of correct detection for each class and 
divided by the amount of data. Meanwhile, the detection level is obtained through the accurate number of 
detectable TP which is divided by the total detection for the attack that is the amount of FP and TP. And 
lastly, False Alarm (APs) are obtained through the normal amount of data detected as attacks divided by TN 
and FP counts. 
 
3.2 Feature Selection 
The feature selection is an important step in pre-processing. To ensure that studies are capable of providing a 
high level of detection, several tests for prominent feature points have been implemented. Experiments 
conducted take into account the number of features involved. This matchs opinion by Kang and Kim (2016) which 
state that the performance of the intrusion detection system relies heavily on the number of features selected 
in the context of accuracy and efficiency. If there are more features are involved so the detection process will 
take time and vice versa. However, the main objective still focusing on achieving higher detection levels 
between the number of features selected. 
 
In order to get the most prominent features in this study, there are several methods of selection of features 
used as discussed. For this purpose, this study applies the findings of the Staudemeyer & Omlin (2014) study 
which uses the distribution histogram method, the baseline plot and the decision tree to get really powerful 
features and represent each type of attack category. Through these methods, a feature set that is really 
important and useful for each type of attack category can be determined. Table 1.2 below lists the relevant 
features for each type of attack. 
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Table 1.2 List of relevant feature for each attack category. 

Bil Attack Category Most relevant feature in data set 

1 DoS (Network) 3, 4, 5, 6, 8, 23, 29, 36, 38, 39, 40 

2 Probe (Network) 2, 5, 29, 33, 34, 35 

3 R2l (Host) 1, 3, 5, 6, 10, 24, 32, 33, 35, 36, 37, 38, 39, 41 

4 U2R (Host) 5, 6, 10, 14, 17, 33 

 
In this study, the features are determined by the group of either network groups or host groups by type of attack.  
DoS and Probe are network categories while R2L and U2R are host category attacks. The features identified in  
above table are then combined into a class of category; either host or network attacks. In addition, each 
recurring feature will only be calculated once to facilitate the group identification process such as Table 1.3 
below. 
 

Table 1.3 List of relevant feature based on network and host category. 

Bil Network Attack Host Attack 

1 protocol_type (2) duration (1) 

2 service (3) service (3) 

3 flag (4) src_bytes(5) 

4 src_bytes (5) dst_bytes (6) 

5 dst_bytes (6) hot (10) 

6 same_srv_rate (29) num_file_creations (17) 

7 dst_host_srv_count (33) srv_count (24)  

8 dst_host_same_srv_rate (34) dst_host_count (32) 

9 dst_host_diff_srv_rate (35) dst_host_srv_count (33) 

10 dst_host_same_src_port_rate 
(36) 

dst_host_diff_srv_rate (35) 

11 dst_host_serror_rate (38) dst_host_same_src_port_rate (36) 

12 dst_host_srv_serror_rate (39) dst_host_srv_diff_host_rate (37) 

13 dst_host_rerror_rate (40) dst_host_serror_rate (38) 

14  dst_host_srv_serror_rate (39) 

15  dst_host_srv_serror_rate (41) 

 
Next step, a set of data is provided according to group features, 13 for network attack types and  15 for host 
attacks and 41 for all features. The data set will go through an experimental process in SVM. The feature set 
that provides the highest classification value will be selected for the next experiment. 
 
3.3 Multi-class classification using Support Vector Machine Hierarchy Classifier 
Classification techniques using hierarchy are used by some researchers, for example Nashat & Abdullah (2010) 
which provide detailed class hierarchical construction in the study of food color checks using Wilk's λ and SVM 
analysis. Meanwhile, Xiao and Cheng (2015) use the OVA and OVO methods to develop the SVM hierarchy based 
on multi-class classification to classify based on bus status. The study uses GPS Guandong's smart data traffic 
and is processed by PCA as well as the RBF kernel to test data samples. Data is also calculated using Euclidean 
distance between Class. Hassan and Damper (2010) used the SVM binary classification method extended to multi-
class classification to identify speech-based emotions. The study applies two standard classifier, one-versus-one 
and one-versus-all to develop a hierarchical classification model in which each classification assigns members to 
each class for three types of public data sets. The dataset used is the popular data set for acted types are EMO-
DB, DES and Serbian. All datasets were tested using binary classification methods one- versus -one (OVO), one- 
versus -all (OVA), Directed Acyclic Graph (DAG) and Unbalanced Decision Tree (UDT). 
 
The model of the study was developed through several experiments conducted to identify the best methods of 
modeling the entire model and determining the classifier for each level of hierarchy. The data will be tested 
using OVA and OVA Binary and Multi-class OVO techniques and the best results of the test obtained from the test 
will determine the priority order of the classifier to construct hierarchical classification. Figure 1.7 below gives 
a detailed of the determination of the classifier model for each level and hence the completion construction of 
the hierarchy. 
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Figure Error! No text of specified style in document..7  Multi-Class Hierarchy Model 
Flow. 

 

4.0 EXPERIMENT DESIGN AND RESULT  
In this study, three experiments were conducted. Experiment I is to get the appropriate feature value for the 
data. Experimental II provides a clear overview of attack data tested based on one-to-all and one-to-one for 
binary models and the construction of multi-class hierarchy models. For Experiment III, tests were performed 
using test data to compare the performance of multi-class OVO models with multi-class hierarchical models. 
 

4.1 Experiment 1 
The main objective of the test is to observe the detection level for different feature inputs and get the best 
number of features that provide high average accuracy. The record used in this experiment is set of training 
data. The experiment run at this level will use three sets of feature, the first is 13 feature for network attack 
type, 15 for host attack and 41 for all features. Next, each set of features will be tested repeatedly before and 
after by using the best parameter that will then produces six classifier. The classification technique used is 
multi-class OVO using LIBSVM with RBF kernel. 
 

Table 1.4 Percentage accuracy breakdown by type of attack based on feature set 

No Type of attack Accuracy level (K) 
13 feature 15 feature 41 feature 

1 Normal 30.77% 31.05% 31.03% 
2 U2R 0.23% 0.1% 0.255% 
3 R2L 6.02% 6.16% 6.113% 
4 DoS 31.10% 31.15% 31.16% 
5 Probe 31.10% 31.07% 31.13% 

 Average of accuracy % 99.22% 99.53% 99.69% 

 
Table 1.4 lists the breakdown of percentage accuracy obtained from the three feature sets for each type of 
attack. Feature 13 is a feature of the network attack type and based on observations, the value of Probe and 
DoS is 31.10% for both class while for the features 15 is 31.15% and 31.07% repectively. While feature 15 is host 
attack type feature and notice that U2R detection value is less than the use of 13 features that is 0.23% compared 
to 0.1%. However there was a slight increase in the percentage of detection value obtained for R2L class from 
6.02% to 6.16%. Based on Table 1.6, the highest average percentage of detection is by features 41 followed by  
features 15 and lastly features 13. Therefore, the number of features for the training and test datasets for all 
subsequent experiments will use 41 features based on this findings. 
 

4.2 Experiment 2 
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The main objective of the second stage test is to evaluate the performance of the classification model between 
the standard multi-class classification model (OVO and OVA) and the construction of the multi-class hierarchical 
classification model. There are three types of tests to run that is OVO binary, multi-class OVO and binary OVA 
before the construction of multi-class hierarchy. Data is sets according to the specified test. Records used are 
from training data sets. There are 10 classifier for OVO and five classifier for OVA using a collection of 41 features 
(results from Experiment I). The result will helps to construct priority order based on the type of attack and 
supply the order in hierarchical classification model for Experiment 3. 
 
Experiment 2(a) 
In this experiment, data are divided into 5 major classes. Each class will then paired with the other class resulting 
in 20 testing pairs as in Table 1.5. Each of these class pairs is tested using LIBSVM with the RBF kernel. This 
method is an OVO testing method but is generated manually. The highest value of classification for each major 
class tested will be selected. 
 
Table 1.5 Accuracy of detection percentage obtained from Binary class OVO testing. 
 

No Dataset Combination  Total Data Number of 
correct 

detection  

Best Parameter  Detection 
Percentage 

A B A B 𝑪  𝜸  

1 DoS-versus-Probe 10 000 5000 5000 32 768 0.008 100% 

2 DoS-versus-U2R 5052 4999 52 2048 0.031 99.98% 

3 DoS-versus-R2L  5995 4998 992 2048 0.0005 99.92% 

4 DoS-versus-Normal 10 000 4997 4998 32 0.5 99.95% 

5 NORMAL-versus-U2R  5052 4999 35 2048 0.008 99.64% 

6 NORMAL-versus-DoS 10 000 4998 4997 32 0.5 99.95% 

7 NORMAL-versus-Probe 10 000 4995 4992 128 0.125 99.87% 

8 NORMAL-versus-R2L 5995 4994 994 512 2 97.15% 

9 PROBE-versus-DoS 10 000 5000 5000 32768 0.008 100% 

10 PROBE-versus-R2L  5995 5000 995 128 0.031 100% 

11 PROBE-versus-U2R 5052 4999 45 512 0.0001 99.84% 

12 PROBE-versus-Normal 10 000 4990 4995 128 0.125 99.85% 

13 U2R-versus-Dos  5052 52 4999 2048 0.031 99.98% 

14 U2R-versus-Probe 5052 45 4999 512 0.0001 99.84% 

15 U2R-versus-Normal  5052 35 4999 2048 0.008 99.64% 

16 U2R-versus-R2L 1047 25 995 32 768 0.0005 97.42% 

17 R2L-versus-Probe 5995 995 5000 128 0.031 100% 

18 R2L-versus-U2R  1047 995 25 32 768 0.0005 97.42% 

19 R2L-versus-Normal 5995 994 4994 512 2 99.88% 

20 R2L-versus-DoS 5995 992 4998 2048 0.0005 99.93% 

 
İt showed that the DoS versus Probe and Probe versus R2L models produced the highest percentage of 100% each. 
This shows that the model is capable of classify accurately. In addition, it may be noted that the lowest 
percentage model is the U2R versus R2L model of 97.42%. 
 
Experiment 2(b) 
This test tests one-to-all binary classes. In this experiment, the data is divided into 5 main classes and testing is 
done between one Class with the remaining of the other class for example DoS versus joint class(Probe + U2R + 
R2L + Normal). These sets are then tested using LIBSVM with RBF kernel and the data are marked with 0 for the 
primary class and 1 for the combination class. In this experiment, data is tested in OVA. Table 1.6 provides  
comparison of the precision level results obtained with the use of best parameters. Refer to the table, DoS 
attack category gave the highest result of accuracy using the best value of parameters C and γ 99.99%. Therefore, 
DoS gets the highest priority order while secondly, Probe gives 99.907% accuracy and 99.907% for R2L. Next U2R 
earns 99.83% and lastly Normal with 99.58%. 
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Table 1.6 Detection accuracy percentage for OVA binary class testing 

Class Best 𝑪 value Best 𝜸 value Accuracy Level (K) with the best 

valueof  parameter 𝑪 and 𝜸 

Normal 128 0.125 99.58% 

U2R 512 0.00195 99.83% 

R2L 128 2 99.91% 

DoS 512 0.125 99.99% 

Probe 128 0.125 99.91% 

 
Experiment 2(c) 
For this experiment, data is divided into 5 main classes and marked using values of 0 to 4 for each class. Test 
conducted using LIBSVM with RBF kernel with multi-class OVO. Table 1.7 shows the confusion matrix obtained 
from OVO classification and Table 1.8 provides level of accuracy for each class. 

Table 1.7 Confusion matrix on accuracy obtained from OVO classification. 

Category Normal U2R  R2L DoS Probe 

Normal 4980 1 12 1 6 

U2R 7 41 4 0 0 

R2L 14 0 981 0 0 

DoS 0 0 0 5000 0 

Probe 4 0 0 0 4996 

 

Table 1.8  Accuracy level for multi-class OVO testing  

Category Accuracy Accuracy Percentage 

Normal 4980/5000 99.60% 

U2R 41/52 78.85% 

R2L 981/995 98.59% 

DoS 5000/5000 100.00% 

Probe 4996/5000 99.92% 

 
The DoS model produced the highest percentage of 100% (5000/5000) accurately. The second highest model is 
Probe with 99.92% (4996/5000). This shows the two models are able to classify precisely. In addition, note that 
the model with lowest percentage is the U2R model which is about 78.85% (41/52). 
 
Order of Priority 2(d) 
Based on the results obtained from the three experiments namely (a) binary class OVO, (b) binary class OVA and 
(c) multi-class OVO, preference arrangement is made to obtain order according to the highest level of accuracy 
followed by subsequent accuracy such as Table 1.9. 
 

Table 1.9 Comparison Summary of Detection Rate between binary class OVO, binary class OVA and 
multi-class OVO 

Class Binary 
Class 
OVO 

Priority 
order 

Binary 
Class 
OVA 

Priority 
order 

Multi-class 
OVO 

Priority 
order 

Normal 99.95% 3 99.58% 5 99.60% 3 
U2R 99.98% 2 99.83% 4 78.85% 5 
R2L 100% 1 99.91% 3 98.59% 4 
DoS 100% 1 99.99% 1 100.00% 1 
Probe 100% 1 99.91% 2 99.92% 2 

 
Furthermore, it conclude that the DoS classifier model provides the highest percentage based on test from binary 
class OVO, binary class OVA and multi-class OVO followed by Probe classifier. The third level is R2L based on the 
highest accuracy obtained during binary class OVO and the third highest for binary class OVA. Next, U2R and 
Normal are the lowest class in priority order based on binary class OVO and binary class OVA. Based on the 
accuracy of the detection value obtained from all the tests, summarized the best priority order as follows: 
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Table 1.10 Final priority order level of detection based on the best order by class  

Class Priority 
order 

DoS 1 
Probe 2 
R2L 3 
U2R 4 
Normal 5 

 

4.3 Experiment 3 
The main objective of this experiment is to evaluate the performance of the standard multi-class classification 
(OVO) and hierarchy using records in test dataset. This test focused on the model ability to detect new types of 
attacks that are not found the previous training data. The record used is the test dataset. The model used is the 
standard classification model (OVO) and the multi-class hierarchy model developed from Experiment II. The 
comparison is done with the result obtained from multi-class OVO classification method with multi-class 
hierarchy experiment with test datasets. Next, Figure 1.8 is the proposed model for multi-class hierarchical 
classification by excluding a class at each level initiated according to priority order defined in Table 1.10. 
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Figure Error! No text of specified style in document..8 The Proposed Model of Hierarchical Multi-
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Table 1.11 The comparison of detection levels for Multi-class OVO Model dan Multi-class hierarchy model 
using training and test data by class 

Class Multi-class OVO Model Multi-class hierarchy model  
Training Data  Test Data  Training Data  Test Data  

Normal 99.60% 96.89% 99.64% 99.38% 
U2r 78.85% 0.00% 99.90% 99.38% 
R2l 98.59% 13.72% 99.99% 77.17% 
Dos 100% 0.00% 99.64% 88.73% 
Probe 99.92% 94.42% 99.85% 90.28% 

Average % 95.39% 41.01% 99.80% 90.98% 

 
Based on Table 1.11 above, multiple-class hierarchical models gives higher results using training data with 99.80% 
compared to 95.39% for Multi-class OVO Models. Subsequently, the testing of multi-class hierarchical models 
using test data provides better Accuracy (P) results compared to the multi-class OVO with 90.98% to 41.01%. U2R 
and DoS  both provide 0% results during testing with test data using multi-class OVO models. This is significant 
with one of OVO's weaknesses which this method fails to provide accurate generalization especially attack data 
that have very small numbers like U2R or too big amount data in this case is DoS. In training data set, DoS data 
have the largest number while U2R is the smallest number between attack class. The classification of multi-class 
OVO Models performed simultaneously for all five models instead compared of one to one for a hierarchical 
model. Through the use of the multi-class hierarchical model, better generalizations can be produced as the 
number of classes is decreasing at each descending level. 

 
5.0 CONCLUSION 
Each SVM classifier can only manage binary classification at a time. For the purpose of classification of multiple 
classes, a combination of several SVM strategies such as OVA, OVO and binary are used. The aim of this study is 
to test and compare which of the model among Multi-class OVO Models and Multi-class binary tree hierarchy 
gave better detection. Based on experiments conducted on the NSL-KDD dataset, this proposed model can 
achieve 90.98% accuracy with a false warning rate of 0.5. There was also increased for U2R and R2L detection 
although not on DoS and Probe Models. The model was carried out using training data consists of 16 047 records. 
The total test data is 22 544 used totally with new attack types which was not found in training data. Therefore, 
this study proposes the use of the SVM hierarchy with inclining binary tree for the classification of multiple 
classes gives better results than the traditional OVO and OVA classification methods in classifing five types of 
attacks in NSL-KDD data sets. The removal of one class at each level helps to speed up the classification process 
and produce better results. This study also contributes to the priority order method for each level of hierarchy. 
Experiments shows that the conclusion is convincing. 
 

6.0 PROPOSED RESEARCH EXPANSION 
For further continuous research, there are several aspects that can be considered to maximize the findings and 
strengthen the research aspect. There are various methods used in intrusion detection to determine the order 
of hierarchy eg Wilk's Analysis, Cluster and DAG methods. However, based on several experiments carried out, 
hierarchical level arrays were determined with the highest yields to the lowest obtained from each experiment. 
This expands the growth of hierarchical level arrangement concept for future studies. Thus, other aspects that 
can be study is the combination of features that produce good feature combinations, balanced and 
comprehensive data for model development and choosing different kernels to get better results. In conclusion, 
this study proves that the multiple-class hierarchical model of the inclined binary tree is able to provide much 
better classification results than the standard classification class of OVO and OVA Class. 
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