
PS-FTSM-2020-015

ONLINE CLUSTERING OF EVOLVING DATASTREAMS

INTO ARBITRARY SHAPED CLUSTERS (CEDAS) USING

PARALLEL PROGRAMMING

Alqasimi Saddam Mohammed Saif Nasser, Elankovan A. Sundararajan

Faculty of Information Science and Technology

Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor Malaysia.

Gp06082@siswa.ukm.edu.my, elan@ukm.edu.my

ABSTRACT

Recently, stream data mining technologies such as data stream clustering algorithms became

highly demanded like K-Means, DBSCAN, K-medoids, CURE, etc. Various applications such as

multimedia data, financial transactions, telecommunication, and planetary remote sensing

require real-time clustering due to the evolving of data flow continuously. As the advance of

networks and the amount of data transmitted in real-time, it becomes harder even though some of

the current sequential algorithms keep up with the evolving of data stream in real-time. Some

suffer from some weaknesses such as lower processing time in the data stream like clustering

algorithm called CEDAS. We proposed to develop a multi-core CPU-accelerated CEDAS using

Parallel Programming in MATLAB. The new technique aims to achieve a higher speed while

maintaining accurate and pure clusters. The proposed technique has three phases. First,

Initialization where all Parameters’ and variables are set. The second phase is dataset

partitioning, using a decomposition model to break the data set stream into smaller data streams

where it can be executed independently as independent threads by the cores using their own

smaller data component of the data set. Then, parallel clustering and data gathering, using

Parallel for-loop (Parfor) of MATLAB Parallel Computing Toolbox (PCT), we distribute the

dataset streams between CPUs' cores/workers which perform CEDAS parallelly before we gather

all workers results and save them. We use TicToc statements and ParTicToc tool to get

processing time of current and proposed algorithms. The experimental results show P-CEDAS

processing time improved by 3.5 to 14.5 times faster than sequential CEDAS. The proposed

Parallel CEDAS algorithm (P-CEDAS) quality is assessed using two quality metrics, the Mean-

Purity and Mean-Accuracy on synthetic and real datasets each of which with various

characteristics, P-CEDAS outperform CEDAS clusters purity and accuracy for most of the cases.

Furthermore P-CEDAS achieved higher speed up on four cores of multicore CPU.

1. INTRODUCTION

A data stream is a set of series of instances that can be read once or limited times using finite

memory storage and finite computing capability as well (Zimányi & Kutsche 2015). Datastream

is generated by various sources continuously in such a way that the data mining process becomes

very challenging and requires a particular process of extracting structures of knowledge from

evolving and rapid data records where this process is known as data stream mining (Kokate et al.

2018). Datastream clustering is conducted as a preprocessing of data stream mining. Additionally,

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-015

data stream clustering is the process of assigning similar data points into groups called a cluster as

it arrives online in the data stream without prior information.

Clustering is one of the most important tasks in the data mining process as many fields and

applications rely on it, including biology, physics, and marketing. Datastream mining has to

follow the necessity of real-time response, limitation of memory, single-pass, and concept-drift

detection (Kokate et al. 2018)The data is processed in an incremental manner so that the

technique used does not access the entire data. On the other side, it focuses on the most beneficial

way to predict the value or class of the new instance/datapoint using previous knowledge from

the previous data point. Some examples of data streams are ATM transactions, sensors data, and

network traffic (Zimányi & Kutsche 2015)However, clustering of a high multi-dimensional data

stream in a real-time became a very challenging process due to data characteristics such as

clustering in limited memory and time with single pass over the evolving data streams as well as

handling noisy data (Amini et al. 2014), with plenty of applications like network intrusion

detection, monitoring environmental sensors, telecommunication, social networks, and web site

analysis, etc. (Amini et al. 2014; Amini & Wah 2012).

The wide sources of data streams result in various data formats, and the advance of real-time data

streaming makes large volume data in such a way that the traditional clustering algorithm cannot

handle the clustering process as required. Researchers have developed new algorithms that can

facilitate and accelerate the clustering process, such as k-means, k-medoids, and DBSCAN, etc.

(Amini & Wah 2012). In some studies, these algorithms were also modified to fit the data which

was being clustered, for instance when the clustering process causes a delay of data streaming,

running the algorithms on multi-core CPU in parallel rather than serial was one of the best

solutions.

CPUs multicore is an associate computer circuit chip that uses two or additional procedure

engines (cores) placed in a single processor. This new approach has proposed to separate the big

task of work of applications into small tasks/threads and unfold them over multiple execution

cores to make the pc system take advantage of the higher performance and better responsiveness

of the system. Computers with more than one processor provide the potential to accelerate

application executions (Fotohi et al. 2019). Multi-Threading is an effective method for

application developers to take advantage of parallelism in hardware. Completely different threads

will run on different processors at the same time utilizing standard APIs and system calls; the

programmatic method in which a program requests a service from the kernel of the operating

system it's executed on (Rinku & Asha Rani 2017). Through Multicore based Multithreaded

Programming (MCMTP), the throughput of an embedded computing system will be increased.

In multicore design, every core contains its own processing resources as a single CPU, except the

Global Memory that is shared between the cores. Tasks can be split into smaller tasks to produce

simply operable components/threads (Rinku & Asha Rani 2017). A thread could be a unit of

execution within a method that's created and maintained to execute a group of threads.

Alternatively, threads will be executed from an associate software system to a different one,

however, the software system is in most cases accountable to schedule the execution of various

threads. Multi-threading increases the efficiency of processor performance with a low-cost

memory system (Fotohi et al. 2019). Performance gets increased by gathering the outputs of the

individual threads that have been executed on individual cores (Fotohi et al. 2019; Rinku & Asha

Rani 2017).

CPUs are dedicated hardware for carrying out the instructions of computer programs. Due to

some limitations in processors' heat, architecture complexity, the gap between processing speed

and speed of memory access times, etc., CPUs have evolved into multicore CPUs and are being

used as highly parallel multi-core processors. General-purpose computing can also benefit from

the computing power of multicore CPUs (Al-Ayyoub et al. 2016). General-purpose computing on

multicore CPUs became popular with this advance; it was obvious the problems related to vectors

and matrices with multi-dimensions vectors become effortless to translate to parallel processors

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-015

(Du et al. 2012) because multicore CPUs are capable to deal with this type of tasks. The first

multicore CPU was developed by IBM and had two cores on a single chip. Parallel programming

languages like Sh/RapidMind and Brook were not easy to use because of the need for

understanding the underlying graphical concepts, however, later MPI and OpenMP appeared and

allowed programmers to focus on high-performance computing concepts rather than multitask

concepts (Du et al. 2012).

Processors (cores) in multicore CPUs are run with high frequencies, using the number of cores

that can guarantee high performance with a low cost of energy (Al-Ayyoub et al. 2016).

Moreover, the modern CPU pipeline uses the speed of a multi-core CPU to maximum advantage

by executing a series of instructions in parallel per clock. Essentially, the pipelined multi-core

CPU has various arithmetic units in a sequential and simultaneous manner to perform a chain of

complex equations simultaneously in one execution cycle. These pipelines were matched

effectively appropriate to scientific computing requirements, and since then they have been

developed for this purpose. CPUs can run up to 32 threads. Therefore, many researchers utilize

this advantage to improve the performance of many algorithms (Loh & Yu 2014).

Parallel programming detaches the code into sub-blocks and implements them at the same time,

which provides a fast processing time in the absence of dependencies between executed

applications capable to run up to 32 threads in parallel. Parallel programing has speeded up many

algorithms especially those which coped with evolving or high dimension data stream.

The main objective of this project is to accelerate and evaluate a data stream clustering algorithm

“Fully Online Clustering of Evolving Data Streams into Arbitrarily Shaped Clusters” (Hyde et al.

2017). Based on (Hyde et al. 2017), the old algorithm named (CODAS) has some limitations

during the clustering process of not updating the removed micro-clusters which makes it non-

fully online as it does not support clusters evolving during data stream clustering process.

CEDAS was a development to CODAS as it becomes fully online, solving those limitations.

CEDAS code will be optimized in some logic parts and then, using the power of parallel

processing on a multi-core CPU, the clustering process will run in a parallel manner. Further,

CEDAS will be evaluated and its productivity will be shown by comparing it with current serial

CEDAS.

2. THE CURRENT ALGORITHM CEDAS

Accelerating the clustering of data-streams is considered the most important factor to get the

best results when the data stream is evolving rapidly. Many techniques have been successfully

applied to solve the clustering of evolving data-streams and this includes (Hyde et al. 2017)

which successfully enhances data stream clustering by offering main processes of clustering like

joining and separating macro-clusters as they evolve in a fully online manner using CPU. Where

the study aimed to implement clustering data into arbitrarily shaped clusters using a fully online

clustering technique. the study claimed that an old technique called "clustering of continuous data

streams into arbitrary shaped" (CODAS) has some limitations during the clustering process which

makes it non-fully online. Moreover, Hyde et al introduce a developed algorithm named

(CEDAS) as a shortcut to "Clustering of Evolving Data-streams into Arbitrary Shapes", which

proved from the experiments and comparisons with similar its capability of accurate detecting the

anomaly in a defined period of time which in order give a great view of possible applications in

network security and atmospheric science research as well as its efficiency and ability to

automate detection across multiple dimensions that cannot be easily visualized or to present a

visualization for primary interpretation by the user. CEDAS algorithm has four main parts, first

the Initialization part to establish the structure where the related information of all micro-clusters

will be stored. The second part is Assign and Update Cluster, to assign data points and update the

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-015

micro-clusters information with the arriving data sample, and that to decide when the data point

will be added to a Micro Cluster (MC) or Outlier. The third is Kill MC when no data points are

fall near a previous data point this course decreases its energy till to be deleted by this part. The

last part is Update MCs Graph and this happens recursively due to the evolving of the data

stream, the clustering of data points will be updated till all MCs grouped with each other by

Edges according to their intersecting data points in order to perform MCs Graph (Macro-

Clusters). CEDAS algorithm four main parts are listed below

CEDAS: initialization.

Input : x , r0

Create micro-cluster structure containing:

C 1 (Centre) = x

C 1 (Count) = 1

C 1 (Macro) = 1

C 1 (Energy) = 1

C 1 (Edge) = 1

 Set number of micro-clusters to 1

 Set modified micro-cluster number, for use updating the graph structure.

CEDAS: update micro-cluster

Input : x , r0

find distance to nearest micro-cluster center, d min

if d min < r 0 then

 reset micro-cluster Energy to 1

 increment number of samples contained in micro-cluster

 if data is within micro-cluster shell then

 recursively update micro-cluster center

 end

else
 Create new micro-cluster

end

CEDAS: : kill micro-cluster.

Input C, Decay

Reduce all C(Energy) by Decay

if Any C(Energy) < 0 then

 Remove micro-cluster

 Remove all edges containing the micro-cluster

 Decrement the number of micro-clusters

end

CEDAS: update graph.

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-015

if A micro-cluster has been modified then

 if the micro-cluster edge list has changed then

 Set a new macro-cluster number throughout the graph

 end

end

 if Any micro-clusters have died then

 Set new macro-numbers for the sub-graphs of its previous edges

 end

CEDAS Algorithm

3 THE PROPOSED APPROACH P-CEDAS

The first practical step in developing CEDAS algorithm is to determine the weaknesses and

the parts that can be paralleled by MATLAB Parallel Computing Toolbox (PTC). MATLAB

Profiling is a way to identify functions are consuming the most time and parallelizable parts in

CEDAS The weakness of the current version lies in its long-time period and low speed that limits

the algorithm's ability to keep up with the increase in sample speed, which means increase

processing time in general. Also, the way that CPU executes threads sequentially may use 15% of

CPU or in other words, only one core is used and that is not efficiently capable with evolving data

stream any more as the data stream rate of transfer has increased nowadays. Figure 2.1 shows the

side of MATLAB Profiling

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-015

Figure 2.1 Profiling (Run and Time CEDAS Algorithm)

CEDAS algorithm phases are very dependent on each other and have no complex calculations

that can be particularly parallelized but we realized from studying some previous researches, to

overcome this problem in some studies the serial processes that can not be parallelized were

broken down into smaller parts and performed them in parallel while they run in sequential

manner locally and independently by multiple threads on multiple cores/processors. CEDAS has

three dependent steps that can gain more speed if they improved to run using the same concept.

First is Assign and Update Cluster, to assign data points and update the micro-clusters

information with the arriving data sample. The second that should come after 'Assign and Update

Cluster' is 'Kill MC'. The third part is 'Update MCs Graph' which is happens recursively due to

the evolving data stream. The power of MATLAB PTC was used to enhance the detected

workload of the algorithm where the compute-intensive portion of the algorithm utilizes the

100% of CPU cores and run in parallel.

There are different programming models to perform parallel multi-threading. In this study, a data

decomposition model is used. To analyze the data set, the clustering process needs to process it

and break it down into smaller sets. Small sets with tasks can be executed independently as

independent threads by the cores but using a separate data component of the data set.

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-015

First, an optimization applied on some logic parts in the current serial algorithm to

implement it on Multi-Cores CPU and to match MATLAB Parfor conditions as well. Then, we

add Parfor to work with the clustering process; we break down the dataset into smaller

components as many as workers we have, then the partitioned datasets will be ready to be

executed independently on one worker/block in parallel. Each worker will run in a sequential

manner but all workers will work on their independent data simultaneously. P-CEDAS

terminology is defined in the following:

1. Sample: is referring to whichever one of a data point in the data set.

2. Local density: is the number of samples of each micro cluster.

3. Micro-cluster: a micro cluster formulated only when local density is higher than

the threshold.

4. Threshold: describes the minimal of samples within the radius of a micro cluster

to formulate a micro cluster otherwise considered an Outlier.

5. Outlier-micro-cluster: when the local density of the micro cluster is less than

threshold it's considered an outlier.

6. Macro cluster: containing a number of intersecting micro-clusters

7. Graph structure: the intersecting micro cluster formulate a macro cluster and all

the details are recorded in a Cluster.

3.1 P-CEDAS ALGORITHM DESCRIPTION AND STAGES

A description of each stage is illustrated in the following. Algorithm1 is running sequentially

however algorithm 2 and 3 are running in parallel and sequential at the same time.

3.1.1 Initialization and parameters setting

This sets P-CEDAS Parameters’ values and creates a structure to save micro-clusters' (MCs)

information, which happens with the first data sample. Pseudo-code is shown in algorithm1

below.

Algorithm 1: P-CEDAS: Initialization and parameters setting

Parameters setting

Set P-CEDAS parameters

Set MC radius to 0.05

Set Number of data samples to consider ‘recent data’ to decay ∈ {500,1000}

Set the min density Threshold of MC to 4

Initialization

Create MC structure = {Center, Count, Energy, X ∈ (1,2,3….,n)}

Create Outliers structure = { Center, Count, Energy, X ∈ (1,2,3….,n)}

INTI Counter to 0

INIT MCs-Graph {Nodes, Edges}

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-015

P-CEDAS parameters values are as same as CEDAS Decay, radius and Minimum Density

Threshold since they should be set based on expert knowledge (Hyde et al. 2017). ‘radius’ is

neighborhood radius so that any data points located on micro-clusters’ radius joins that particular

micro-cluster. ‘Number of data samples’ value is dependent on dataset type where we set its value

to 500 in case of artificial datasets and 1000 in case of the real high dimensional dataset. ‘𝐹𝑎𝑑𝑒 =
1/𝑑𝑒𝑐𝑎𝑦’ is the time when the micro cluster entirely disappear due to its energy decrement.

‘Threshold’ is the minimum neighbors within the ε-neighborhood of a point to be considered a

core point.

Creating MCs and Outlier structures, ‘Centre’ is locating the position of the micro cluster

in the data space. ‘Count’ stores and add up the count of data samples that are allotted to the MC.

The ‘Count’ value is also used to enable updates of micro-cluster centers recursively. ‘Energy‘

used to specify the length of time since the last data has arrived in a micro cluster. Decay

algorithm reduces ‘Energy’ when no data has been received by the micro cluster. Low ‘Energy’

allow unused MC entirely disappear; X presences one datapoint each iteration of the for loop

from 1 till end of dataset. ‘ Edge’ lists the intersecting MCs. ‘Counter’ is defined as a modified

MC number and will be used within the clustering process for updating graph structure.

Initializing an MCs graph with two fields ‘Nodes’ will be the MCs and ‘Edges’ are the pairs with

intersecting Nodes where points fall within intersect part of nodes. the graph is used to define

whichever MC belongs to Macro-clusters (Macro), MCs are linked with each other by edges

inside the Macro to perform the arbitrary shape clusters.

3.1.2 Dataset partitioning

Keeping in mind that when data is partitioned and stream proportional portions of the data into

the workers if all chunks fit into the cache on a core. some of the serial codes' overhead caused by

single-core execution will be decreased. However, too small chunks will result a false

performance improvement (Hershgal 2010).

P-CEDAS partitions the dataset into small datasets so that each core of the CPU can have

its single part of data and run the code independently as it has its data. Number of the produced

data sets is depending on the number of CPUs' multiple cores we have. for example, if we have a

CPU with 4 multi-core then the data set will be partitioned into 4 datasets. A simple Pseudo-code

for this part is shown in algorithm 2 below.

Algorithm 2: P-CEDAS: Dataset Partitioning

Load data set

NumSets = Get NumWorkers

SmallSetSize = (DataSize / NumSets)

Parfor i= 1 to NumSets % Partition Dataset into NumSets of SmallSetSize

set(1)= data(1, SmallSetSize)

set(2)= data(SmallSetSize, SmallSetSize*2)

set(3)= data(SmallSetSize*2, SmallSetSize*3)

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-015

Set(i)= data(SmallSetSize*(i-1), SmallSetSize*(i+1))

End

Using MATLAB object of ‘cv’ partition class. Our data set has been partitioned and seated to

small datasets for workers. After loading the data set, MATLAB ‘Random Number Generator’ is

set to ‘default’ to avoid random parts of dataset and produce the same part of data every time P-

CEDAS running with same NumWorkers. ‘NumSets’ is the number of sets will be partitioned

from the whole dataset, and as mentioned before NumSets will be as NumWorkers we have.

‘SmallSetSize’ is the amount of data in each set, and last is the partitioning part where each set

will get same amount of data using SmallSetSize.

3.1.3 Parallel Clustering and Data Gathering

In this stage, three main parts are ‘Assign datapoints and update cluster graph’, ‘Kill micro-

cluster’ and ‘update clusters relation table’. The three parts are executed by the multiple cores

simultaneously as each one of the cores will work independently on its data that were previously

prepared in algorithm 2.

Algorithm 3: P-CEDAS: Parallel Clustering and Data Gathering

Par (NumWorkers)

Parfor n= 1 to NumWorkers

Par.tic

Switch (NumWorkers)

Case 1: % Worker(1) do Clustering Process on set(1)

for Counter= 1 to size (Set(1)) / sampleSpeed

 time = time +1

 for i=1 to sampleSpeed

 Counter = Counter +1

 if not end of stream Then

 Read datapoint X ∈ (1,2,3….,n)

 Assign (CM)

 End
 Kill (CM)

 UpdateClustersRelationTable

 If time equal to datalogSpeed Then

 Create DataLogged structure of CMs and Outliers

 End

 End

End
Case 2: : % Worker(2)

 %Repeat case1 on set(2)

Case n: : % Worker(n)

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-015

 %Repeat case1 on set(n)

Endswitch

result{n} = DataLogged %Gather and Save all Workers Results

Par.toc

End Pafor
Plot (p) %plot timing of each Worker

Save clustering result set(i)= data(SmallSetSize*2, SmallSetSize*3)

Set(i)= data(SmallSetSize*(i-1), SmallSetSize*(i+1))

End

Clustering process will not be explained in detail since it is as same as in CEDAS (Hyde et al.

2017). P-CEDAS uses ParTicToc tool for timing Parallel for Loops. What makes it special is the

ability to observe various running costs that maybe occur when using Parfor loops, the use of

each worker as well. ‘Par(NumWorker)’ creates an object of Par class with a number of

iterations (NumWorker). ‘Par.tic’ is to log the iterations start time and directly called after parfor.

The next call is before ‘END’ Parallelfor, the reason for that is to inform the compiler that the

variable is sliced so that it will allocate the end time of each worker separately. ‘Par.toc’ stops the

clustering timing and then plots the result by using Par tool of all workers' overheads, the timing

of each worker also saved in a structure.

‘Parfor 1 To NumWorkers’ starting a par pool with the given number of workers. The statement

‘Switch’ used to guarantee independent data access. While multi-threads are synchronized and

not mixed to execute their part of the code. Since some of variables used inside Parfor are

temporary variables, it means they will be released after parfor execution. Therefore, data

gathering must be before ‘EndParfor’ using Sliced structure ‘result{n}’ where n refers to a

worker number. DataLogged stores local clustering results that controlled by the inner for loop

condition using the variable 'SampleSpeed' the number of samples to be obtained. Finally,

combine the clustering result of all workers and save the clustering result of the whole resulted

clusters, outliers, graph, parameters, processing time and counters.

3.2 EXPEREMENNTAL SETUP

Using a free tool in MATLAB (MathWorks) in a PC with Intel® Core™ i5-4572U CPU @

3.20GHz and 24GB memory running on Windows10.

Two synthetic data sets and one real are selected to evaluate P-CEDAS. Spiral contains 6012 data

records; DS2-Class has 9919 of data records as well. However, KDD99ÇUP CUP'99 has around

5 million, only 10% of it used in researches, the same will be used with P-CEDAS as well , which

contains 490,000 data records (Qian et al. 2017).

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-015

3.3 P-CEDAS PERFORMANCE EVALUATION

In addition to accelerating data clustering processing time, the developed algorithm will pass

through an evaluation test to ensure the quality of the output’s accuracy and purity of the

clustering of the data stream. Accuracy and purity are an evaluation method that uses quality

metrics classified in internal and external indices. Moreover, speedup scalability over scaling the

number of cores will be justified. These are used in order to guarantee the proposed P-CEDAS

algorithm has a better performance compared with the benchmark CEDAS.

3.3.1 Speedup Scalability

The amount of performance increment or speedup is the ratio of time of sequential algorithm to

the time of the parallel algorithm. Below is the simple formula to estimate the maximum speedup

of a parallel algorithm

This research focuses on the development of new techniques for

Speedup =
𝑇𝑠𝑒𝑟𝑖𝑎𝑙

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

…(3.1)

‘Tserial’ is presence the time taken without parallelism, and ‘Tparallel’ is the computed time

with parallelism. speedup depends on problem size as well, which is affected by the size and type

of memory from the first place. There are other factors that affect speed up negatively such as

inherently sequential part of the algorithm (Buell 2011).

3.3.2 Purity and Accuracy

According to (Hyde et al. 2017), the measurements of accuracy and purity of CEDAS clustering

have improved to reach 100% in some parts of the clustering period and to above 90% in general.

In this research, the mean measurement of both will be calculated, to guarantee P-CEDAS output

quality was not affected by the updates that applied to accelerate the clustering process. To

determine the percentage of correct cluster samples number have been assigned to the dominant

class, the equations below of both accuracy and purity measurements are used.

𝑚𝑒𝑎𝑛 𝑝𝑢𝑟𝑖𝑡𝑦 =
∑

|𝐶𝑖
𝑑|

|𝐶𝑖|
𝑁
𝑖=1

𝑁
 × 100%

…(3.2)

𝑚𝑒𝑎𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ |𝐶𝑖

𝑑|𝑁
𝑖=1

∑ |𝐶𝑖|𝑁
𝑖=1

 × 100%
…(3.3)

where the variable ‘Ci’ depicts the number of samples in a cluster; ‘Cd’ represents the number of

assigned samples that added up to the main class, and 'N' refers to the number of clusters.

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-015

4 RESULT AND DISCUSSION

To asses the alternative P-CEDAS algorithm in different environments. using the high-

performance language MATLAB, we run the algorithms illustrated in chapter 3. P-CEDAS

parameters are set based on dataset type.With Spiral and DS2_Class; Decay = 500; radius = 0.05;

Threshold =4; Sample speed set to one of {5,10,15,20,25} each experiment. And with

10%KDD99ÇUP: Decay = 1,000; radius = 0.05; Threshold =4; Sample speed set to one of

{100,125,150,175,200} in each experiment.

Both artificial and real data are being streamed as a data flow. The dataset streamed

sequentially on CEDAS, as the clustering process runs in a serial manner. While in P-CEDAS

each dataset was partitioned before being streamed to fit the number of workers that P-CEDAS is

running, thus, enabling data stream clustering parallelism.

The execution period is timed by ‘MATLAB tic/toc’ with CEDAS, while P-CEDAS uses

‘ParTicToc’ for timing Parfor loop. As the experiment has employed the different values of

Sample speeds, each of which we mesured the processing time average of performing 'CEDAS'

and 'P-CEDAS' ten times using the same Sample speed value with the streamed dataset.

This experiments aims to verify the average of purity, accuracy and processing time. Real or

artificial datasets are used to assess the proposed algorithm.

4.1 Spiral Dataset

Figure 4.1 of Spiral dataset illustrates the

processing time in seconds of P-CEDAS

and CEDAS. When the sample speed

various from 5 to 25 point per second

(pps), it can be seen that the processing

time of the P-CEDAS algorithm values

less than 0.8203s, while CEDAS

algorithm processing time is relatively

high above 3.8182s. Looking from an

overall perspective it is readily apparent

that P-CEDAS algorithm outperforms

CEDAS algorithm regarding the

processing time due to the decrement in

CPU overhead by partitioning the

process into four smaller processes and

executing them in parallel using

Parfor(PCT) of four workers.

Figure 4.1 Spiral processing

time (CEDAS, P-CEDAS)

0.10233

1.10233

2.10233

3.10233

4.10233

5.10233

5 10 15 20 25P
ro

ce
ss

in
g

Ti
m

e
(S

)

Sample Speed (PPS)

CEDAS P-CEDAS

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-015

Spiral purity and Acuracy of (CEDAS, P-CEDAS) arbitrary shape clusters

Figure 4.2 illustrates the average purity test of resulted clusters of P-CEDAS and CEDAS using

the Spiral dataset. As it shows below P-CEDAS average purity ranges between 87.2% and 86.6%

not affected by the number of sample speeds. While CEADS records an average range between

84.84% and 87.5% inversely proportional to the number of sample speeds. Overall, P-CEDASs'

average purity has been maintained as CEDAS's, the reason is that a new CM can capture the

characteristics of a mixed data object, and is accurately distributed, is introduced. This feature

makes the cluster purity of the P-CEDAS algorithm increasingly accurate.

Figure 4.3 illustrates the average accuracy. On the Spiral dataset as shown below P-CEDAS reach

an average accuracy above 77.5% on various numbers of sample speed. On the other side, as the

number of sample speeds increases, CEDAS fell slightly from 81.84% in 5 pps sample speed to

79.14% in 25 pps sample speed. Unlike CEDAS, P-CEDAS shows relative accuracy decay but

maintained during the increases of numbers of sample speed, because, the data points cannot be

treated as noise points, and this has maintained cluster accuracy.

4.2 DS2_Class Dataset

Figure 4.4 shows the result of DS2_Class dataset, illustrates the processing time in seconds of P-

CEDAS and CEDAS. When the sample speed various from 5 to 25 pps, it can be seen that the

processing time period of the P-CEDAS less than 0.7568s, while CEDAS algorithm processing

time period is very high above than 6.3568s. Moreover, P-CEDAS gives faster results as it

responds positively to the increment of the number of samples. Looking from an overall

perspective it is readily apparent that P-CEDAS algorithm outperforms the CEDAS algorithm

regarding the processing time due to the decrement in CPU overhead by distributing the process

into four smaller processes and executing them in parallel using Parfor (PCT) of four workers.

Figure 4.2 Spiral purity Figure 4.3 Spiral Accuracy

50

60

70

80

90

5 10 15 20 25

A
vg

 P
u

ri
ty

 (
%

)

Sample Speed (PPs)

CEDAS P-CEDAS

49.846

59.846

69.846

79.846

89.846

99.846

5 10 15 20 25

A
vg

 A
cc

u
ra

cy
(%

)

Sample Speed (PPS)

CEDAS P-CEDAS

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-015

Figure 4.5 illustrates CEDAS and P-

CEDAS clusters' purity average on

the DS2_Class dataset using sample

speeds various between 5 to 25 pps.

Looking at the chart there is a slight

upward trend in P-CEDAS purity

average from 77.78% in 5 until

81.2% in 15 sample speed.

Additionally, the bar chart shows a

relative increase in purity average of

CEDAS instable proportional to the

sample speed increment from 77.3%

in 5 sample speed to reach the

highest average 81.75% when

sample speed number is 15. Both,

CEDAS and P-CEDAS give a slight

fell down in 20 and 25 sample speed

numbers but CEDAS maintained an

average purity better by 81.46%

when sample speed is 25, unlike P-CEDAS which fell down till 77.3% again.

Figure 4.5 illustrates CEDAS and P-CEDAS clusters' purity average on the DS2_Class dataset

using sample speeds various between 5 to 25 pps. Looking at the chart there is a slight upward

trend in P-CEDAS purity average from 77.78% in 5 until 81.2% in 15 sample speed.

Additionally, the bar chart shows a relative increase in purity average of CEDAS instable

proportional to the sample speed increment from 77.3% in 5 sample speed to reach the highest

average 81.75% when sample speed number is 15. Both, CEDAS and P-CEDAS give a slight fell

down in 20 and 25 sample speed numbers but CEDAS maintained an average purity better by

81.46% when sample speed is 25, unlike P-CEDAS which fell down till 77.3% again.

Overall, Although it seems P-CEDAS data partitioning might result in some clustering

efficiency loss, P-CEDASs' purity average overperformed CEDAS's three times, and that because

of a new CM that can capture the characteristics of a mixed data object, and is accurately

distributed, is introduced. This feature makes the cluster purity of the P-CEDAS algorithm

sometimes accurate.

Figure 4.5 DS2_Class Purity………………. Figure 4.6 Ds2_Class Accuracy

DS2_Class purity and Accuracy of (CEDAS, P-CEDAS) arbitrary shape clusters

60

70

80

90

5 10 15 20 25

A
vg

 P
u

ri
ty

 (
%

)

Sample Speed (PPs)

CEDAS P-CEDAS

49.29

59.29

69.29

79.29

89.29

99.29

5 10 15 20 25

A
vg

 A
cc

u
ra

cy
(%

)

Sample Speed (PPS)

CEDAS P-CEDAS

Figure 4.4 DS2_Class processing time

(CEDAS, P-CEDAS)

0.05681
0.75681
1.45681
2.15681
2.85681
3.55681
4.25681
4.95681
5.65681
6.35681
7.05681
7.75681

5 10 15 20 25

P
ro

ce
ss

in
g

Ti
m

e
(S

)

Sample Speed (PPS)

CEDAS P-CEDAS

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-015

Figure 4.6 illustrates the average accuracy. On the S2_Class dataset as shown below P-CEDAS

and CEDAS are being asses during a various of 5 pps until 25 pps of sample speeds.

It's obvious in the charts below, P_CEDAS reaches an accuracy average above 77.5% and below

81.2% on various numbers of sample speed pps. On the other side, as the number of sample speed

increases, CEDAS upward trends slightly from 83.84% in 5 sample speed pps to 86.14% in 25

sample speed. P-CEDAS shows relative accuracy improvement as the sample speed number is

increased because, the data points cannot be treated as noise points, and this has improved cluster

accuracy. Generally, P-CEDAS shows relative accuracy decrement as data is too partitioned into

small sets and that causes efficiency to lose.

4.3 KDD99ÇUP Dataset

Figure 4.7 showing the 10%of the KDD99ÇUP dataset below illustrates the processing time in

seconds of P-CEDAS and CEDAS. When the sample speed various from 100 to 200 pps.

CEDAS, the processing time period increases dramatically from 2,457s in 100 sample speed to

5,298s in 200 sample speed, a high sample speed number means more samples carried per

second. This means increase in the period of real-time processing CEDAS due to the limit in CPU

memory bandwidth. However, P-CEDAS shows stable processing time, less than the 1,600s

during the changeable sample speeds in the experiment and that because P-CEDAS uses an

appropriate data-parallel model helps to decrease the memory bandwidth limitation by resulting

more work done through 4

workers at the same time.

To sum-up, the

Parallel CEDAS overcome

sequential CEDAS, which

suffers from additional

overhead as far as the number

of sample speed becomes

greater. However, P-CEDAS

does not affected by the

changeable number of sample

speed as it did with the

synthetic data sets due to the

high dimensions found in

KDD99ÇUP.

Figure 4.8 illustrates CEDAS and P-CEDAS clusters' purity average on the 10%KDD99ÇUP

dataset using various numbers of sample speed. Looking at the chart although P-CEDAS average

purity increases proportionally from 87.44% in 100 sample speed pps to 97.57% in 175 samples

speed pps, there is a slight downward trend in P_CEDAS average purity 93.0% when the sample

speed number is 200.While CEDAS purity average increases proportionally from 9.29% in 100

sample speed to above 97% in 200 sample speed. We conclude that, P-CEDAS reaches a total

purity percentage of 94.6 overperforming CEDAS average 92.5% purity, due to the feature that

Figure 4.7 KDD99ÇUP processing time

(CEDAS, P-CEDAS)

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

100 125 150 175 200

P
ro

ce
ss

in
g

Ti
m

e
(S

)

Sample Speed (PPS)

CEDAS P-CEDAS

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-015

makes cluster purity more accurate. Because of a new P-CEDAS CM that can capture the

characteristics of a mixed data object and is accurately distributed.

Figure 4.9 illustrates CEDAS and P-CEDAS clusters' average accuracy on the 10%KDD99ÇUP

dataset using various numbers of sample speed. As shown in the chart P-CEDAS average purity

range between 79.77% in 100 sample speed pps to 95.74% in 175 samples speed pps, there is a

slight downward trend in P_CEDAS purity average 87.6% when the sample speed number is 200.

While CEDAS purity averages show an unstable range of 61.58% in 100 sample speed to 58.9%

in 200 sample speed.

Overall, P-CEDAS reaches a remarkable total purity percentage of 90% overperforming

CEDAS with an average of 59.3% accuracy, P-CEDAS shows relative accuracy improvement

because, the data points cannot be treated as noise points, and this has improved cluster accuracy.

4.4 SPEED UP AND SCALABILITY EVALUATION OF P-CEDAS EXECUTION TIME

The following experiment has been intended to examine P-CEDAS speedups scalability. The idea

is performing P-CEDAS on an ascending number of available cores and measuring the gained

speedup achieved.

Figure 4.8 KDD99ÇUP-Purity Figure 4.9 KDD99ÇUP-Accuracy

KDD99ÇUP- Purity and Accuracy average of (CEDAS, P-CEDAS) arbitrary shape clusters

50

60

70

80

90

100

110

100 125 150 175 200

A
vg

 P
u

ri
ty

 (
%

)

Sample Speed (PPs)

CEDAS P-CEDAS

0

20

40

60

80

100

120

100 125 150 175 200

A
vg

 A
cc

u
ra

cy
(%

)

Sample Speed (PPS)

CEDAS P-CEDAS

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-015

By involving more cores the number of threads increasing as well, which means speed up

supposed to keep up, and that would prove the scalability of P-CEDAS, otherwise, if the

algorithm fails to keep up would means it's not scalable enough. The following table provides

speedups of P-CEDAS.

Where N is the number of workers/cores and S is the computed speed up via the equation

above. From the speedup’s escalation gotten we can claim that P-CEDAS is scalable and speedup

increase as more worker/cores are involved.

The graph below shows the speed up at which P-CEDAS gains more acceleration over 4

workers from 1 to 4. The graph shows P-CEDAS processing time reach 0.9442s on one core and

2.6401s on four cores. Overall, there is adoption on the number of workers/cores involves more

computational threads that cooperate on carrying processing overhead. Thus, shows a typical

success of speedup P-CEDAS as more cores involved in the process result in speedup boost up.

5 CONCLUSION

Many conventional data mining algorithms including data stream clustering algorithms are

suffering from the limit memory bandwidth and increase in the period of real-time processing of

the continuous data flow. The gap between big data growth and processors improvement causes

CPUs to suffer more, indeed the capability of sequential processing is not the best solution to

fully use the power of processors. The parallel processing approach is an extremely good solution

when it comes to acceleration and full uses of processors' power. Therefore, this research aimed

to use parallel processing to accelerate and evaluate an evolving data stream clustering algorithm

CEDAS. In which it performs clustering process over multiple threads on multi-core CPU

reducing processing period. The chosen algorithm has been studied and developed it to

appropriate the new method of processing has done successfully and parallelization achieved

through MATLAB (PCT) and Multi-core CPU. The data stream is mapped to a number of

workers that run the clustering process in completely independent divisions, the parallel-for loop

of MATLAB (PCT) carried out the small processes in each worker simultaneously, thus,

processing time period and processor overhead have notably decreased.

Figure 4.10 P-CEDAS speedups over 4 cores

Table 4.1 P-CEDAS Speedups
N 1 2 3 4

S 0.9442 1.7363 2.4073 2.6401

0.9442

1.7363

2.4073
2.6401

0

1

2

3

1 2 3 4

SP
EE

D
U

P
S

(S
)

NUMBER OF CORES

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-015

Using synthetic and real data flows to examine the proposed parallel CEDAS validity,

both sequential CEDAS and P-CEDAS performed on the same machines over various cases of

sample speed values, to avoid false acceleration or less accurate evaluations. The result clusters

are evaluated and compared with the serial version algorithm in terms of the quality purity and

accuracy of clusters. The proposed algorithm P-CEDAS overcome CEDAS in the experiments

and shows a remarkable speedup about 5 to 9 times faster using spiral, 11 to 14 times faster using

DS2_Class, and 1.6 t0 3.5 times faster with KDDCUP99. Despite that, clusters' purity and

accuracy have varied between 77.3% and 97.6% purity as well as 76.9% and 95.8% accuracy;

various percentages illustrate the lowering and improvement in various cases of the experiment.

Even though the objectives were achieved, the proposed algorithm has some limitations that

are worthy to be mentioned. We observed that P-CEDAS speedup falls down when sample speed

is small, especially with high dimensional data. P- CEDAS recorded a modest speedup on single-

core, which calls into question that the development was not good enough despite the speedup

results on 4 cores. Although Parfor loop of MATLAB (PCT) is easy to use when comparing it

with parallel programming languages, it has more limitations in control and conditions of use.

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-015

REFERENCES

Al-Ayyoub, M., Yaseen, Q., Shehab, M. A., Jararweh, Y., Albalas, F. & Benkhelifa, E. 2016. Exploiting

GPUs to Accelerate Clustering Algorithms. Computer Systems and Applications (AICCSA), 2016

IEEE/ACS 13th International Conference of 1–6.

Amini, A., Saboohi, H., Ying Wah, T. & Herawan, T. 2014. A fast density-based clustering algorithm for

real-time internet of things stream. The Scientific World Journal 1. doi:10.1155/2014/926020

Amini, A. & Wah, T. Y. 2012. DENGRIS-Stream: A Density-Grid based Clustering Algorithm for

Evolving Data Streams over Sliding Window. International Conference on Data Mining and

Computer Engineerging 206–210.

Buell, D. 2011. In Praise of An Introduction to Parallel Programming. Aims.Me.Cycu.Edu.Tw.

doi:10.1007/978-1-4471-2736-9

Du, P., Weber, R., Luszczek, P., Tomov, S., Peterson, G. & Dongarra, J. 2012. From CUDA to OpenCL:

Towards a performance-portable solution for multi-platform GPU programming. Parallel Computing

38(8): 391–407.

Fotohi, R., Effatparvar, M., Sarkohaki, F. & Behzad, S. 2019. An improvement over threads

communications on multi-core processors. arXiv preprint arXiv:1909.11644.

Hershgal, D. 2010. Intel Guide for Developing Multithreaded Applications. Intel Technology Journal

12(01): 27–38. doi:10.1535/itj.1201.03

Hyde, R., Angelov, P. & Mackenzie, A. R. 2017. Fully online clustering of evolving data streams into

arbitrarily shaped clusters 383: 96–114. doi:10.1016/j.ins.2016.12.004

Kokate, U., Deshpande, A., Mahalle, P. & Patil, P. 2018. Data Stream Clustering Techniques, Applications,

and Models: Comparative Analysis and Discussion. Big Data and Cognitive Computing 2(4): 32.

doi:10.3390/bdcc2040032

Loh, W. K. & Yu, H. 2014. Fast density-based clustering through dataset partition using graphics

processing units q , qq. INFORMATION SCIENCES 308: 94–112. doi:10.1016/j.ins.2014.10.023

Qian, Q., Zhao, S., Xiao, C. & Hung, C. 2017. Multi-level Grid Based Clustering and GPU Parallel

Implementations (4). doi:10.1109/ISPAN-FCST-ISCC.2017.75

Rinku, D. R. & Asha Rani, M. 2017. Analysis of multi-threading time metric on single and multi-core

CPUs with Matrix Multiplication. Proceedings of the 3rd IEEE International Conference on

Advances in Electrical and Electronics, Information, Communication and Bio-Informatics, AEEICB

2017 152–155. doi:10.1109/AEEICB.2017.7972402

Zimányi, E. & Kutsche, R. D. 2015. Business Intelligence: 4th european summer school, eBISS 2014

Berlin, Germany, July 6-11, 2014 tutorial lectures. Lecture Notes in Business Information Processing,

hlm. Vol. 205. doi:10.1007/978-3-319-17551-5

Cop
yri

gh
t@

FTSM

