
PS-FTSM-2020-027

A Combination of TFIDF and Pre-Trained Word Embedding Model

for Arabic Named Entity Recognition

Nadia Baqer Hassoon, Lailatul Qadri Zakaria

Faculty of Information Science and Technology, University Kebangsaan Malaysia,

43600 Bangi, Selangor Darul Ehsan, Malaysia.

Email: NadiaBaqer@yahoo.com, lailatul.qadri@ukm.edu.my

ABSTRACT

Arabic Named Entity Recognition (NER) refers to the extraction of original nouns in Arabic

language like the names of people, organiztrion, location and others. The state of the art in

Arabic NER were based on the modern technology of word embedding. This technology

utilizes a feed-forward neural network in order to give words within different contexts a

distinctive embedding. Such technology showed remarkable performance in terms of

extracting NEs. However, it suffers from a serious limitation which is the ‘out-of-vocabulary’

problem where some terms within the testing might not have an embedding within the model.

Therefore, this study aims to incorporate additional information to the word embedding in

order to solve the aforementioned problem. Such additional information can be obtained by

the Term Frequency Inverse Document Frequency (TFIDF). A benchmark dataset has been

considered in the experiments along with some pre-processing tasks including diacritics and

unnecessary characters removal. In addition, a pre-trained model has been utilized to get large

repository for Arabic words’ embedding. Such model has been trained on Arabic Twitter data.

Lastly, a Decision Tree (DT) classifier has been utilized to accommodate the classification.

Experimental results showed that the integration of TFIDF and word embedding has

outperformed the word embedding only by obtaining a weighted f-measure of 0.91. This

result proves the usefulness of the proposed incorporation of TFIDF and word embedding in

terms of overcoming the problem of ‘out-of-vocabulary’.

Key words: Arabic Named Entity Recognition, Word Embedding, TFIDF, Pre-

trained, Decision Tree

INTRODUCTION

Natural language processing (NLP) is an interesting research area where several text tasks have

been addressed. One of the significant tasks was the Named Entity Recognition (NER), this task aims

to train the machine in order to be able to detect the original nouns like the names of people,

organization, location and other entities (Abdallah et al., 2012). In the past, the studies were mainly

relying on predefined rules that specify the occurrence of named entities (Abdallah, et al., 2012). For

example, utilizing specific terms that would likely occur with named entities can help the machine to

recognize them. Let a frequent term as ‘doctor’ such term would possibly occur vastly with people’s

name such as ‘Doctor John’ or ‘Doctor Adam’. Such frequent terms can be organized in a dictionary or

so-called Gazetteer and once the machine detect an occurrence for one of these terms, the machine

would extract either its preceding or following terms as entities based on predefined rules. The rules

will guide the machine whether to extract the terms before or after the frequent terms based on its type

such as location, organization or person.

Nonetheless, due to the drawbacks of rule-based approach like the difficulty of building the rules

and the wide range of customizations required to deal with different languages, researchers tended to

utilize other techniques such as the machine learning (Shaalan, 2014). These techniques do not require

building a set of rules, but rather, it builds a model statistically to examine the appearance of named

instances (Al-Shoukry and Omar, 2015). Apparently, the frequent terms can be examined as individual

features where the single term would be tested if it is a frequent term or not, and if it is a frequent term,

the probability of followed or preceding word to be a named entity would be arisen.

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-027

Machine learning technique have shown substantial capabilities for identifying the named entities

with high classification accuracy. However, there are still numerous challenges that would face the task

of NER like encountering sophisticated languages as Arabic, examining sophisticated representations

such as the word and character embedding, and other issues. This study intends to tackle the task of

NER specifically in Arabic and explore the challenges for optimizing the classification accuracy.

Recent studies in Arabic NER are exploiting word and character embedding. Character embedding

has shown the highest f-measure values but it suffers from the expensive computation where numerous

parameters need to be tuned. Word embedding is still having fair results but it is composed of two

approaches corpus-based and pre-trained. The corpus-based refers to the model building upon the terms

and contexts of ANERCorp dataset (Attia et al., 2018; Helwe and Elbassuoni, 2019). While, pre-

trained refers to the exploitation of a previously trained model on large Arabic text collection (Ali et

al., 2019; Khalifa and Shaalan, 2019). In fact, the pre-trained model tends to be more effective

compared to the corpus-based since it has been fine-tuned and trained on larger number of terms and

contexts. However, it suffers from the ‘out-of-vocabulary’ problem where some terms in ANERCorp

might not exist in the pre-trained model.

 Recently, some studies have suggested the use of additional information along with the

embedding for limiting the case of ‘out-of-vocabulary’. De Boom et al. (2016) have incorporated the

term frequency of terms along with the embedding for short text classification. The incorporation of

TFIDF will contribute toward decreasing the problem of ‘out-of-vocabulary’. This can be represented

when the pre-trained model would not have an embedding for a given term. In this regard, the TFIDF

of such term can be used to initiate an embedding vector which might help the machine learning to

configure its context.

Hence, this study aims to exploit such idea of incorporation TFIDF with the pre-trained embedding

model to limit the ‘out-of-vocabulary’ cases in Arabic NER.

RELATED WORK

Past studies were reviewed for the purpose of this research since the study is proposing the DT

classifier for the NE extraction just like some past studies. To extract Arabic NEs from crime

documents, Al-Shoukry & Omar (2015) used the DT classifier. The experiment results revealed that

integrating DT with NB has helped improve the accuracy of classification where the f-measure gotten

was 94.19%.

Recently, modern representations of word embedding introduced by Google in 2013 was

investigated by various studies. This representation aims at providing a distinct embedding value that is

made up of a wide range of characteristics for each word. Such characteristics simulate the meaning of

the word, its grammatical tag and how it is related to other words. Word2Vec which is a two-layer

Neural System architecture is used to generate the embedding. It inputs one-hot encoding vector of the

expression and yield the distinct embedding.

Profound acquiring tactic for Arabic termed unit perception where a Long Short-Term Memory

(LSTM) is incorporated into a Conditional Random Fields (CRF) to create the word embedding was

presented by Awad et al., (2018). The authors have built and trained their model in order to create the

embedding for each word using a particular corpus called ANERCorp. This type of embedding model

is known as corpus-based which means a generation of embedding using particular corpus. An f-

measure of 75.68% has been acquired using the proposed method. The concentration on this study in

terms of the entities was dedicated to the names of the people.

Similarly, a Deep Neural Network (DNN) based on word embedding for Arabic NER task was

revealed by Attia et al., (2018). The same corpus of ANERCorp was investigated and the same method

of creating the embedding was used where a corpus-based training was done. An f-measure of 70.09%

for the proposed method was revealed from the experiment carried out. The concentration on this study

in terms of the entities was dedicated to the Person’s name.

Furthermore, a word embedding approach based on LSTM for Arabic named entity recognition was

revealed. For both generating the embedding and testing the classification, the ANERCorp dataset was

investigated. Results revealed 83% f-measure of the proposed method. The concentration on this study

in terms of the entities was dedicated to the Person’s name. Helwe & Elbassuoni (2019).

Khalifa and Shaalan (2019) investigated the problem of ‘out-of-vocabulary’ that resulted from word

embedding. A LSTM with Convolutional Neural Network (CNN) to incorporate mutual charisma

embedding and expression embedding was proposed by the authors. However, the authors have not

generated the embedding from the corpus of ANERcorp for word embedding. Instead, a pre-trained

model of embedding that was previously trained on Arabic Wikipedia words was exploited. 86.96%

was the f-measure result using ANERCorp. The concentration on this study in terms of the entities was

dedicated to the Person’s name.

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-027

Lastly, a bi-directional LSTM for addressing word and character embedding in Arabic NER was

presented by Ali et al., (2019). Similarly, the ANERcorp corpus has been used in the experiments.

However, the embedding of the words has been brought from a pre-trained model of Arabic Wikipedia.

The f-measure was 86.43%. The concentration on this study in terms of the entities was dedicated to

the Person’s name.

MATERIALS AND METHODS

This section intends to explain the framework of the proposed embedding by tackling the

components of such framework. From Figure 1, it is obvious that the framework includes four stages;

dataset, preprocessing, embedding, and classification. First stage will discuss the details of the dataset

used within the experiments. While the second stage discusses the required preprocessing tasks to turn

the data into much suitable form. Third stage elaborates on the core contribution of this study where the

proposed embedding method is being illustrated in detail. Fourth stage discusses the classification

method that has been applied through the baseline and the proposed embedding. The stages can be

summarized as follows:

- Stage 1 (Dataset): tackles the dataset used within the experiments.

- Stage 2 (Preprocessing): tackles the preparation tasks required to clean the data.

- Stage 3 (Word Embedding): tackles the proposed embedding method.

- Stage 4 (Classification): tackles the classifier used to predict the NEs and the validation

method.

Figure 1 represents the stages.

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-027

Figure 1. Stage of research framework

ANERCorp dataset

Remove character enlargement (Tatweel)

Remove Diacritics 2 (Tashkeel)

Remove Diacritics 1 (Harakat)

Pre-trained model

(Twitter data)

Decision Tree (DT) Classification

Word Embedding

TFIDF

Preprocessing

stage 1

Stage 2

Stage 3

Stage 4

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-027

Dataset

This stage includes the details of the dataset used within the experiments. The dataset used is

known as ANERcorp which is an annotated dataset for Arabic named entities introduced by Benajiba et

al. (2007). The data contains approximately 150 thousand tokens. It contains different labels ranging

from person into currencies. Table 1 highlights the statistics of the dataset.

Table 1 Dataset details

Attribute Training Testing Total

Documents 3821 1106 4927

Person 4728 1707 6435

Location 4189 844 5033

Organization 2513 895 3408

Miscellaneous 1223 434 1657

Total entities 12,653 3880 16,533

Regular words (O) 109,606 25,833 135,439

Total tokens 118,851 29,713 ~150k

Preprocessing

Unlike the traditional text analysis, the named entity recognition task has a unique preprocessing

scheme in which the stopword removal or stemming is not considered. The reason behind this is that

the overall assessment of any NER system is to recognize any word whether it is a named entity or not.

Therefore, removing the stopwords or performing the stemming would not help the recognition task.

However, for Arabic language, a single term would be written with various forms. Thus, the

preprocessing in this study aims to unify such forms for facilitating the discrimination of words.

Remove Diacritic 1

The first factor that might cause the variations in writing a word in Arabic is the diacritic. Such

diacritic is meant to help the reader pronouncing the word. For example, a single term in Arabic such

as ‘ذهب’ would have multiple meaning based on the pronunciation, if it is formed as ‘ it would ’ذهبَ

mean ‘gone’, but it is formed as ‘ it would mean ‘gold’. Hence, the use of diacritics would help to ’ذهبَ

differentiate the meaning of the word, but at the same time, since the diacritics are considered as

independent characters thus, within the analysis some words with the exact meaning would gain

different embedding. For example, the word ‘َ صناعة’ and ‘َ صناعة’ have the same meaning of ‘industry’,

yet they have different characters based on the variations of diacritics.

In this regard, this study will eliminate the diacritics in order to unify the word embedding within

the dataset. Table 2 highlights a snippet of discarding these diacritics.

Table 2 Example of removing diacritics 1

Term with diacritic 1 Term without diacritic 1

 أعلن أعلنَ

 اتحاد اتِحاد َ

 صناعة صِناعةَِ
 السيارات السّياراتَ

 في في

انيا المانيا الم

To remove the Harakat, a python package called PyArabic (Zerrouki, 2010) has been used.

Remove Diacritic 2

Similar to the previous section, this task is also meant to remove another type of diacritics which

are also used for helping the reader to pronounce a word in Arabic. However, these diacritics have

different types of charactersَwhich are usually applied on the last letter in any Arabic word. Table 3

highlights a snippet of removing these diacritics.

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-027

Table 3 Snippet of removing diacritics 2

Term with diacritic 2 Term without diacritic 2

 أعلن أعلن

 اتحاد اتحادا َ

 صناعة صناعة َ

 السيارات السّياراتَ

 في في

 المانيا المانيا

To remove the Tashkeel, a python package called PyArabic (Zerrouki, 2010) has been used.

Remove Characters Enlargement

In Arabic language, there is a mechanism used sometimes to highlight specific words to catch the

attention of the reader. Such mechanism aims at enlarging some letters. For example, the word ‘الحياة’

can be written as ‘الحيـــــاة’ in order to grab the attention. Although both words have the same meaning

yet, they would have different embedding within the text analysis. Therefore, it is important to remove

the enlargement in order to unify both words. Table 4 highlights a snippet of removing the character

enlargement.

Table 4 Snippet of removing character enlargement

Word with Tatweel Word without Tatweel

نـــــــأعل أعلن

 اتحاد اتحـــــــاد

 صناعة صـــــناعة

 السيارات الســـــيارات

 في فــــي

 المانيا المـــــانيا

To remove the Tatweel, a python package called PyArabic (Zerrouki, 2010) has been used.

Word Embedding

Recently, the word embedding has been used for text analysis due to its powerful performance in

terms of identifying word similarity based on the context. Word embedding is being built using a

neural network architecture known as Word2Vec. Such architecture consists of two main paradigms

including Skip-gram and Continuous Bag of Word (CBOW). The first paradigm aims at processing a

single term for the sake of predicting its context or surrounding terms. While the second paradigm is

processing multiple context terms in order to predict the target term. According to Chiu et al. (2016)

the skip-gram is usually preferred for tasks such as entity mention tagging and relation extraction.

For getting an embedding for a given term, Word2vec model is initiated by determining a target

corpus that contains respective number of words and contexts. However, the main challenging issue

faces the model building is to identify robust parameters. In fact, there are many parameters that

involved in the model building of embedding such as the dimension of embedding, window words,

minimum count and number of epochs. The dimension refers to the length of embedding which usually

determined in when identifying the unique terms in any corpus. While, the window words are the

number of surrounding words selected by the model. Minimum count refers to the least occurrence

number of terms to be selected within the dimension. Finally, the epochs are the error-tuning iterations

within a neural network architecture.

Pre-Trained Embedding

As mentioned earlier, building a word embedding model would suffer from the limited contexts that

exist in the selected corpus, as well as, the problem of parameter tuning. Therefore, the research

community in Natural Language Processing (NLP) field has tended to dedicate a huge effort for

providing a model that can be trained on vast amount of text with millions of words and tens of

thousands of contexts. In this regard, much effort can be given for tuning the parameters in order to get

the most accurate embedding. Hence, many researchers would have the ability to take the advantage of

such pre-trained model to accommodate different text analysis tasks.

One of the popular pre-trained models in Arabic language is the one introduced by Soliman et al.

(2017). Such model has been trained on Twitter Arabic data where 66.9 million documents along with

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-027

1090 million tokens have been considered. Table 5 highlights parameter settings used by the pre-

trained model.

Table 5. Pre-trained parameter settings

Parameter Value

Text source Twitter

Number of documents 66.9 million

Number of tokens 1090 million

Dimension 300

Window size 5

Minimum count 500

Epochs 1000

As shown in Table 5, the pre-trained model showed large number of trained token and documents.

This would lead to produce a sophisticated embedding that consider wide range of contexts. On the

other hand, the model parameters have been accurately adjusted. According to Soliman et al. (2017),

the 300 dimension has shown better performance in terms of text analysis compared to other

parameters such as 100 and 200. While, 5 window words showed better performance in text analysis

compared to other values. The reason behind such better is that 5 window words would lead to consider

two words before and two words after a target term, which is enough for learning the context of the

target term. In addition, choosing a value of 500 for a minimum count was showing fair performance

because it would avoid the terms with lesser occurrences of 500 which might be insignificant terms.

Finally, a value of 1000 of epochs was showing good text classification accuracy due to the possible

iterations of error-tuning.

Yet, there is still a serious limitation behind the pre-trained model, such limitation is known as ‘out-

of-vocabulary’ (Levy et al., 2015). This problem occurred when the pre-trained model is used to

predict a specific text data that might contain terms that have no embedding inside the pre-trained

model.

Term Frequency Inverse Document Frequency (TIDF)

As shown within previous sections, the pre-trained model suffers from several limitations.

Therefore, some authors have suggested to utilize additional information with the embedding. For

example, De Boom et al. (2016) have incorporated the TFIDF information along with the embedding

for short text analysis. This study has been motivated by this hypothesis in which the TFIDF of a term

can be incorporated with the pre-trained embedding for limiting the case of ‘out-of-vocabulary’.

In fact, TFIDF is composed of two parts; TF which is the simple notion computing appearances of a

given term, and IDF is the ratio of term occurrence in terms of a specific document. To understand the

mechanism of TFIDF, Table 6 highlights a snippet of words taken from the ANERcorp dataset.

Table 6 Dataset snippet of words

Sentence Word Translation Class

S
en

ten
ce 1

 announces O قدر

 Expert O خبير

 economic O اقتصادي

 Israeli O اسرائيلي

 That O إن

 Cost O تكلفة

 invasion O العدوان

 On O على

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-027

 Lebanon LOC لبنان

 Reached O بلغت

 Billion O مليار

 Dollar MISC دولار

. . O

S
en

ten
ce 2

 however O فيما

 estimated O بلغ

 destruction O الضرر

 economical O الاقتصادي

 Inside O داخل

 provenances O البلدات

 Israeli O الاسرائيلية

 Billion O مليار

 Shekel MISC شيكل

. . O

As shown in Table 6, words in the ANERcorp dataset are separated independently in every line.

These words are forming sentences in which the sentences are being separated by period (i.e. ‘.’).

Therefore, the table showed two sentences. First step to get TFIDF is to consider the distinctive terms

without duplication. Table 7 highlights these distinctive terms.

Table 7 Term frequency

 Distinctive Terms

S
en

te
n

ces

ر
 قد

ر
خبي

ي
صاد

 اقت

ي
رائيل

س
 ا

ن
 إ

 تكلفة

ن
 العدوا

ى
عل

ن
 لبنا

ت
 بلغ

ر
 مليا

ر
لا
 دو

 فيما

غ
 بل

ر
ر
ض

 ال

ي
صاد

لاقت
 ا

ل
خ
 دا

ت
 البلدا

رائيلية
س
لا
 ا

ل
شيك

an
n

o
u
n

ces

ex
p

ert

E
co

n
o

m
ic

Israeli

T
h

at

co
st

In
v

asio
n

o
n

L
eb

an
o

n

reach
ed

b
illio

n

D
o

llar

h
o

w
ev

er

estim
ated

d
estru

ctio
n

eco
n

o
m

ical

in
sid

e

P
ro

v
en

an
ces

Israeli

S
h

ek
el

S1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

S2 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1

As shown in Table 7, the words have either occurred in S1 or in S2 where the occurrence has been

depicted as ‘1’ and the absence has been depicted as ‘0’. However, only the word ‘مليار / billion’ has

occurred in both sentences. Hence, examining only the TF would not be sufficient in terms of

determining the importance of a term because some terms might occur in a sentence while disappear

from other sentences. Therefore, it is important to examine the IDF which measure the ratio of a term

occurrence in accordance to all the documents or sentences. It can be calculated as follow:

IDF = log N/Nt (

1)

N indicates the sentences quantity, while Nt indicates the number of sentences contain the term t.

In respect the above formulas, all the words within Table 7 have a single occurrence in either

sentence 1 or sentence 2 excepts the word ‘مليار / billion’ which had occurrences in both sentences.

Therefore, all the terms would have an IDF of 0.3, whereas the word ‘مليار / billion’ would have an IDF

of 0. Table 8 highlights the gain of IDF.

Table 8 IDF values

Terrm IDF computation

 IDF = log N/Nt = log 2/1 = 0.3 قدر

 IDF = log N/Nt = log 2/1 = 0.3 خبير

 IDF = log N/Nt = log 2/1 = 0.3 اقتصادي

 IDF = log N/Nt = log 2/1 = 0.3 اسرائيلي

 IDF = log N/Nt = log 2/1 = 0.3 إن

 IDF = log N/Nt = log 2/1 = 0.3 تكلفة

 IDF = log N/Nt = log 2/1 = 0.3 العدوان

 IDF = log N/Nt = log 2/1 = 0.3 على

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-027

 IDF = log N/Nt = log 2/1 = 0.3 لبنان

 IDF = log N/Nt = log 2/1 = 0.3 بلغت

 IDF = log N/Nt = log 2/2 = 0 مليار

 IDF = log N/Nt = log 2/1 = 0.3 دولار

 IDF = log N/Nt = log 2/1 = 0.3 فيما

 IDF = log N/Nt = log 2/1 = 0.3 بلغ

 IDF = log N/Nt = log 2/1 = 0.3 الضرر

 IDF = log N/Nt = log 2/1 = 0.3 الاقتصادي

 IDF = log N/Nt = log 2/1 = 0.3 داخل

 IDF = log N/Nt = log 2/1 = 0.3 البلدات

 IDF = log N/Nt = log 2/1 = 0.3 الاسرائيلية

 IDF = log N/Nt = log 2/1 = 0.3 شيكل

Now, to represent the TFIDF values for all terms, both Table 7 and Table 8 will be multiplied. The

results of such multiplication can be depicted in Table 9.

Table 9 Term frequency

 Unique Terms

S
en

te
n

ces

ر
 قد

ر
خبي

ي
صاد

 اقت

ي
رائيل

س
 ا

ن
 إ

 تكلفة

ن
 العدوا

ى
عل

ن
 لبنا

ت
 بلغ

ر
 مليا

ر
لا
 دو

 فيما

غ
 بل

ر
ر
ض

 ال

ي
صاد

لاقت
 ا

ل
خ
 دا

ت
 البلدا

رائيلية
س
لا
 ا

ل
شيك

S
1

0
.3

0
.3

0
.3

0
.3

0
.3

0
.3

0
.3

0
.3

0
.3

0
.3

0 0
.3

0

0

0

0

0

0

0

0

S
2

0

0

0

0

0

0

0

0

0

0

0

0

0
.3

0
.3

0
.3

0
.3

0
.3

0
.3

0
.3

0
.3

Proposed Combination Embedding Model

After explaining both the pre-trained and TFIDF, this section will discuss the proposed combination

embedding method using the two aforementioned approaches. Figure 2 depicts the flowchart of the

proposed embedding where several check conditions are being considered. As shown in Figure 3.2, the

flowchart begins with a checkup whether the term is digit or not. If the term is digit, a vector with a

length of 300 dimension will be created and populated with the value of ‘0.0’. This is because giving

each digit a distinct embedding would not help identifying the NEs. Therefore, all the digits would

have a unified embedding.

The checkup continues if the term was not digit by accommodating another checkup whether the

term is a punctuation or not. If the term is a punctuation, a vector with length of 300 dimension will be

created and populated with the value of ‘1.0’. Similar to the digits, giving different embedding for

every punctuation would not help the identification of NEs.

If the term was not a punctuation, the flowchart continues to check whether the term has an

embedding inside the pre-trained model. If it has embedding, it would simply bring the embedding and

assigned to the term. Cop
yri

gh
t@

FTSM

PS-FTSM-2020-027

Figure 2. Flowchart of the proposed embedding

However, it is possible to encounter the problem of ‘out-of-vocabulary’ where a term would not

have an embedding inside the pre-trained model. Therefore, the proposed embedding will utilize the

TFIDF for clarifying the term’s significance based on its occurrence. Then, a vector with length of 300

will be created and populated with random values that will be later multiplied by the TFIDF value of

the term.

Classification

In order to perform the classification, Decision Tree (DT) classifier has been used in the

experiments. The reason behind using DT is that it has effective performance in terms of addressing

embedding features in a tree manner (Guo and Berkhahn, 2016).

Term

term is digit?

0.0 0.0 0.0 ……

Dimension = 300

Yes

term is punctuation?

No

1.0 ……

Dimension = 300

Yes

No
1.0 1.0

term in pre-

trained model

0.41 ……

Pre-trained Embedding Dimension = 300

Yes

No 0.55 0.89

0.13 ……

Random generation of Embedding Dimension = 300

0.15 0.12 0.56
×

TFIDF

Proposed Embedding

0.072 …… 0.084 0.067

term in TFIDF

vocabulary

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-027

RESULT

The results of classification have been evaluated using precision, recall and f-measure. Every model

has been evaluated separately with DT classification. Table 10 shows the results.

Table 10. Weighted F-measure comparison

Class label Pre-trained Pre-trained + TFIDF

Person 0.55 0.61

Location 0.6 0.71

Organization 0.37 0.47

Currency (MISC) 0.31 0.35

Non-Named Entity (O) 0.95 0.96

Weighted Average 0.89 0.91

As stated in the comparison, first, the person class label has been classified accurately by the

combined model where the f-measure was 0.61 compared to the pre-trained model where the f-measure

was 0.55. Apparently, the proposed combined model has outperformed the pre-trained model because

the proposed model would have additional information to the pre-trained embedding which is the

TFIDF. Such additional information has helped the model to reduce the problem of ‘out-of-

vocabulary’.

Similarly, for the location class label, the outperformance was dedicated for the proposed combined

model where the f-measure was 0.71 compared to 0.6 acquired by the pre-trained model. As mentioned

earlier, the pre-trained model has been targeting Twitter data which has a lot of informal Arabic

location names in which the single location would be written differently. Therefore, the pre-trained

model would not be able to classify the location names inside the ANERcorp dataset correctly. In

contrast, the incorporation of TFIDF has contributed to solve this problem by improving the

classification accuracy. This is because the TFIDF would examine the occurrence of location names

within ANERcorp which helps the classification.

Furthermore, for the organization class label, the outperformance was dedicated for the proposed

combined model where the f-measure was 0.47 compared to 0.37 acquired by the pre-trained model.

As mentioned earlier, the pre-trained model has been targeting Twitter data which has a lot of informal

Arabic organization names in which the single location would be written differently. Therefore, the

pre-trained model would not be able to classify the organization names inside the ANERcorp dataset

correctly. In contrast, the incorporation of TFIDF has contributed to solve this problem by improving

the classification accuracy. This is because the TFIDF would examine the occurrence of organization

names within ANERcorp which helps the classification.

Yet, the currency class label (MISC) detection has been improved when incorporating the TFIDF

where the proposed model acquired an f-measure of 0.35 compared to 0.31 acquired by the pre-trained

model. This is because the pre-trained model was built based on Twitter data which might not contain

many currency mentions, while the combined model would have the ability to take the advantage of

TFIDF.

For the non-named entities, the pre-trained model showed an f-measure of 0.95 which can be

justified due to its capability of detecting wide range of words. Finally, the incorporation of TFIDF has

contributed toward improving the classification of such entity where the f-measure was 0.96.

To sum up, the incorporation of TFIDF with pre-trained model has improved all the classes. This

leads to an overall average of f-measure 0.91 for the proposed combined model compared to 0.89 for

the pre-trained model. This can demonstrate the usefulness of the proposed incorporation of TFIDF.

Figure 3 displays the f-measure of each class label for both the pre-trained model and the proposed

combined model.

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-027

Figure 3. F-measure results for the two models

CONCLUSION

This study proposed a combination of pre-trained word embedding model and TFIDF for

Arabic NER task. The proposed combined model has outperformed the individual application

pre-trained model. Examining new embedding architectures like document and character

embedding can be a great opportunity for examining their capabilities in terms of NER task.

REFERENCES

Abdallah, et al. 2012. 'Integrating rule-based system with classification for Arabic named

entity recognition', Computational Linguistics and Intelligent Text Processing, Springer,

pp. 311-322.

Al-Shoukry and Omar. 2015. Arabic named entity recognition for crime documents using

classifiers combination, International Review on Computers and Software, Vol. 10 No. 6,

pp. 628-634 (Access 2015

Ali, et al. 2019. Boosting Arabic Named-Entity Recognition With Multi-Attention Layer,

IEEE Access, Vol. 7, pp. 46575-46582 (Access 2019

Attia, et al. 2018. Ghht at calcs 2018: Named entity recognition for dialectal arabic using

neural networks, Proceedings of the Third Workshop on Computational Approaches to

Linguistic Code-Switching, pp. 98-102.

Benajiba, et al. 2007. 'Anersys: An arabic named entity recognition system based on

maximum entropy', Computational Linguistics and Intelligent Text Processing, Springer,

pp. 143-153.

Chiu, et al. 2016. How to train good word embeddings for biomedical NLP, Proceedings of

the 15th workshop on biomedical natural language processing, pp. 166-174.

De Boom, et al. 2016. Representation learning for very short texts using weighted word

embedding aggregation, Pattern Recognition Letters, Vol. 80, pp. 150-156 (Access 2016

Guo and Berkhahn. 2016. Entity embeddings of categorical variables, arXiv preprint

arXiv:1604.06737, (Access 2016

0
.5

5 0
.6

0
.3

7

0
.3

1

0
.6

1

0
.7

1

0
.4

7

0
.3

5

P E R S L O C O R G M I S C

COMPARISON BASED ON F-MEASURE

Pre-trained model Proposed Combined model

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-027

Helwe and Elbassuoni. 2019. Arabic named entity recognition via deep co-learning, Artificial

Intelligence Review, Vol. 52 No. 1, pp. 197-215 (Access 2019

Khalifa and Shaalan. 2019. Character convolutions for Arabic Named Entity Recognition

with Long Short-Term Memory Networks, Computer Speech & Language, Vol. 58, pp.

335-346 http://www.sciencedirect.com/science/article/pii/S0885230818301657 (Access

2019

Levy, et al. 2015. Improving distributional similarity with lessons learned from word

embeddings, Transactions of the Association for Computational Linguistics, Vol. 3, pp.

211-225 (Access 2015

Shaalan. 2014. A survey of Arabic named entity recognition and classification,

Computational Linguistics, Vol. 40 No. 2, pp. 469-510 (Access 2014

Soliman, et al. 2017. Aravec: A set of arabic word embedding models for use in arabic nlp,

Procedia Computer Science, Vol. 117, pp. 256-265 (Access 2017

Zerrouki. 2010. Pyarabic, an arabic language library for python.

Cop
yri

gh
t@

FTSM

http://www.sciencedirect.com/science/article/pii/S0885230818301657

