
PS-FTSM-2020-028

AN INTEGRATED OF CORPUS-BASED AND PRE-TRAINED

WORD EMBEDDING MODEL FOR ARABIC NAMED ENTITY

RECOGNITION

Nihad Mahmood Adnan, Lailatul Qadri Zakaria

Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor Darul Ehsan, Malaysia.

Email: nihad_albairuty@yahoo.com, lailatul.qadri@ukm.edu.my

ABSTRACT

Named Entity Recognition (NER) refers to the task of extracting entities’ names such as

persons, companies and countries. Arabic is one of the languages that has been addressed

adequately for the process of NER. In particular, most of the recent related work on Arabic

NER have utilized the word embedding technique. This technique aims at exploiting the

neural network architecture in order to generate unique embedding for each term. The related

work has been divided into studies that have built the word embedding on specific corpus,

this approach is known as corpus-based. While other studies have utilized a pre-trained model

of word embedding. The first approach suffers from the parameter tuning problem where

numerous parameters must be adjusted in order to get precise embedding. Whereas, the pre-

trained model which has been proposed to solve the parameter tuning, but still suffers from

the ‘out-of-vocabulary’ problem where some words would not have an embedding within the

model. In this manner, this research proposes an integration of corpus-based and pre-trained

word embedding to trade-off the limitations of the two approaches. ANERcorp dataset has

been used with some normalization tasks such as unwanted characters removal. On the other

hand, a corpus-based word embedding model has been built using the ANERcorp corpus. In

addition, a pre-trained model that has been trained on Arabic Wikipedia data, has been

utilized. Finally, a K-nearest Neighbour (KNN) classifier has been used as a classifier.

Results showed that the proposed integration has outperformed the individual implementation

of corpus-based and pre-trained models by achieving a weighted average f-measure of 0.93.

This result demonstrates the effectiveness of the proposed integration for limiting the

out-of-vocabulary problem.

Key words: Arabic Named Entity Recognition, Word Embedding, Corpus-based,

Pre-trained, K-Nearest Neighbour

INTRODUCTION

Text processing is a research study that caught the researchers’ attentions in the last two decades.

Text processing contains various applications like question answering, sentiment analysis and named

entity recognition (NER). NER is considered the fundamental task in text processing where the proper

nouns are being addressed to be detected (Shaalan, 2014). The earliest methods used to detect proper

nouns were depending on rule-based approach, dictionary-based approach or a combination between

them (Abdallah et al., 2012). Obviously, to detect proper noun such as a geographical location, there

are wide range of keywords that could be followed or before such location. For example, keywords

such as ‘city’, ‘state’, ‘kingdom’, ‘republic’ and others would probably occur with any geographical

location. Hence, using a dictionary that contains vast amount of these keywords would be a sufficient

solution to detect the named entities. Besides the dictionary, a group of rules can be used to supervise

the dictionary where sometimes the keywords would occur before or after the entities. Therefore, the

rules will organize and guide the extraction using keywords.

Since the keywords are tremendous and everyday would witness newly keywords, as well as, the

variety of cases regarding keyword occurrence, the rule and dictionary techniques have been

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-028

abandoned and other methods have taken their place. The most competent methods used for NER were

based on machine learning technique. This is because such methods have the ability to learn from

historical data and statically. When using the machine learning techniques wide range of features can

be examined such as morphological features (e.g. capitalization, uppercase and lowercase) along with

semantic features such as the keywords (Al-Shoukry and Omar, 2015).

Recently, several concerning cases have been arisen when using the machine learning techniques

for NER task. One of these cases is treating languages like the Arabic language where the entities could

take various forms with different dialectical forms. Another challenging issue is the modern

representations such as the word embedding and character embedding which are known as deep

learning. Deep learning has posed various challenging issues in terms of representing the words. This

study will examine some of the aforementioned challenges.

The state-of-the-art in Arabic NER task was depicted by the use of deep learning methods in which

word embedding revealed significant improvement on the classification accuracy compared to the

conventional methods (Attia et al., 2018; Helwe and Elbassuoni, 2019). Nonetheless, these studies have

built their word embedding model using a corpus-based topology where the model is being trained on

the terms inside any dataset, corpus or corpora (Levy and Goldberg, 2014). The problem of corpus-

based is that it trained on limited number of words and contexts for example, the ANERCorp that has

been used to initiate the corpus-based model in the literature is containing around 150 thousand terms

that have numerous duplications. In addition, due to the nature of word embedding which depends on

neural network architecture, the corpus-based would require massive parameter tuning where size of

input, hidden and output layers along with number of epochs should be carefully chosen. Otherwise,

the embedding produced by the corpus-based would be imprecise and does not have the ability to

differentiate the context of the words.

To overcome the aforementioned problem some studies have exploit a pre-trained model where a

fine-tune model that has been trained on large number of terms is being used to give accurate

embedding (Ali et al. 2019; Khalifa & Shaalan 2019). However, according to Levy & Goldberg (2014)

there are numerous cases where the pre-trained model would not have an embedding for particular

terms which known as ‘out-of-vocabulary’ problem. Assume a pre-trained model that has been trained

on numerous domain of interests terms and contexts; there will be domain-specific terms that might not

be encountered by the model. Therefore, these terms would have not any embedding inside the model.

In this manner, this research proposes a combination of corpus-based and pre-trained model of

word embedding in order to overcome the “out of vocabulary” limitation which might improve the

classification accuracy.

RELATED WORK

Since the current study focuses on proposing a KNN classifier for the extraction of NE, it is

important to highlight some previous studies that have employed the use of such classifier for the same

task. Based on the review of literature, it was found that only few researches have employed the use of

such classifier, in which the popularly used classifiers include NB, SVM, and NN. However, other

researchers Shabat & Omar (2015) have taken leveraged the KNN in terms of examining the

similarities between the data instances. More so, they have extracted Arabic NEs from crime

documents by combining the KNN, with SVM and NB. The experimental results revealed that the

accuracy of classification has been improved by such combination, with an f-measure of 93.36%.

 Recently, the modern representations of word embedding introduced by Google in 2013 have been

investigated by various scholars. The objective of this representation is to provide embedding value

that is made up of a variety of attributes for each word. The meaning of a word, its grammatical tag, as

well as its relations to others can be simulated by means of such attributes. The Word2Vec, which is a

two-layer Neural Network architecture is used to generate the embedding. With this Word2Vec, the

one-hot encoding vector of the word is used as the input, while the distinct encoding is the output.

 In a study conducted by Awad et al. (2018) they focused on the generating word embedding

by proposing a deep learning technique for Arabic named entity recognition, where the Long Short

Term Memory (LSTM) was united with a Conditional Random Fields (CRF). They were able to build

and train their model through the use of a given corpus called ANERCorp. Such kind of embedding

model is referred to as corpus-based, which means that specific corpus is used in generating

embedding. The proposed method has achieved an f-measure of 75.68%. in their study, they entities

used were the names of Persons.

In the same way, a Deep Neural Network (DNN) was proposed by Attia et al. (2018) based on word

embedding for Arabic NER task. They also employed the use ANERCorp to generate the embedding,

and also perform a corpus-based training. The results of their experiments revealed that with their

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-028

method, an f-measure of 70.09% was achieved. The focus of this study in terms of the entities was

dedicated for the Person names.

Additionally, in a study by Helwe & Elbassuoni (2019), a word embedding method based on LSTM

was presented for the recognition of Arabic named entity. Here, they also ANERCorp dataset was used

to generate the embedding as well as to test the classification. Based on their experimental results, an f-

measure of 83% was achieved. The concentration on this study in terms of the entities was dedicated

for the Person names.

The ‘out-of-vocabulary’ problem was investigated by Khalifa and Shaalan (2019). This problem

arises from word embedding. In their study, they presented an LSTM with Convolutional Neural

Network (CNN) that is capable of performing both word embedding and character embedding.

Nonetheless, they did not use the ANERcorp for word embedding, rather, they used a pre-trained

model of embedding that has been previously trained on Arabic Wikipedia words. Through the use of

ANERcorp, they were able to achieve an f-measure of 86.96%. The concentration on this study in

terms of the entities was dedicated for the Person names.

Lastly, Ali et al. (2019) focused on addressing character and word embedding in the task of Arabic

NER through a bi-directional LSTM which they proposed. Likewise, the use of the ANERcorp corpus

has been employed in the experiments, the words embedding was done using a pre-trained model of

Arabic Wikipedia. Their experimental results revealed that they attained an f-measure of 86.43%. The

concentration on this study in terms of the entities was dedicated for the Person names.

MATERIALS AND METHODS

The research design of this study has been set to articulate the research objectives in which the

proposed combination embedding method can be applied. For this purpose, the research design

contains the required process to apply the proposed method as depicted in Figure 3.1.

The first phase of the design contains the dataset where a set of Arabic named entities dataset is

being used for testing the proposed method. The second phase of the design contains the normalization

tasks which has been meant to facilitate the text processing and eliminate the unnecessary data.

The third phase contains the two main approaches of the word embedding including corpus-based

and pre-trained models. The third phase also contains the proposed combination embedding method

where the two approaches are being integrated. Finally, the fourth phase includes the classification

using K-nearest neighbor classifier based on the proposed embedding method. As well as, such phase

contains the evaluation mechanism. The phases are illustrated as follows:

- Phase 1 (Arabic NEs Dataset): contains the details of the dataset used by the proposed

method.

- Phase 2 (Normalization): contains the preprocessing tasks that intended to prepare the data.

- Phase 3 (Word Embedding): contains the word embedding models used in this study along

with the proposed embedding.

- Phase 4 (Classification & Evaluation): contains the explanation of the utilized classifier

along with the evaluation mechanism.
Figure 1 represents the phases.

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-028

Figure 1. Phases of research design

Arabic Named Entities Dataset

To apply the proposed combination embedding, it is important first to find an annotated corpus that

contains Arabic NEs with their class labels. One of the popular annotated dataset for this purpose is the

one that proposed by Benajiba et al. (2007) which was called ANERcorp. Such corpus is composed of

nearly 150,000 tokens in which each token is being annotated as NE or not. Even the NE class label is

divided into person names, location names, organization names and currencies. Table 3.1 depicts the

information about ANERcorp dataset.

Arabic NEs Dataset

Tatweel Characters Removal

Tashkeel Diacritic Removal

Harakat Diacritic Removal

Pre-trained model

(Wikipedia)

Corpus-based model

(ANERCorp)

Proposed Integrated Embedding

KNN Classification & Validation

Word Embedding

Normalization

Phase 1

Phase 2

Phase 3

Phase 4

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-028

Table 1 ANERcrop dataset information

Attribute Training Testing Total

Documents 3821 1106 4927

Person 4728 1707 6435

Location 4189 844 5033

Organization 2513 895 3408

Miscellaneous 1223 434 1657

Total entities 12,653 3880 16,533

Regular words (O) 109,606 25,833 135,439

Total tokens 118,851 29,713 ~150k

As shown in Table 1, the highest quantity of entities are the person names followed by location,

organization and currencies. Table 2 depicts a snippet of the dataset.

Table 2 Snippet of the dataset

Arabic word English Translation Tag

 call O دعا

 Representative O مندوب

 France LOC فرنسا

 To O لدى

 Nations ORG الأمم

 United ORG المتحدة

 Jan PERS جان

 Mark PERS مارك

 Council ORG مجلس

 Security ORG الأمن

 To O الى

 Announce O اعلان

 Truce O هدنة

 Humanitarian O انسانية

Normalization

In contrast to the classical text analysis problems, NER task has special normalization tasks. For

example, in document classification, the stopwords are removed because they have no significant

impact on classifying the document. However, in NER task, the stopwords are important for training

the classifier on non-NEs. Yet, there are still other normalization tasks that NER requires for better

classification accuracy. Following subsections illustrate these tasks in further detail.

Harakat Diacritic Removal

The first type of unnecessary data that need to be eliminated are the diacritics. Diacritics in Arabic

are various and have several forms. It means to be used for facilitate pronouncing the word. For

instance, a word like ‘جزر’ can be interpreted as ‘carrot’ or ‘islands’. Therefore, the Harakat diacritic is

used to guide the reader whether it refers to ‘carrot’ if the diacritics were as ‘جَزَر’ or ‘islands’ if the

diacritics were as ‘جُزُر’.

Although the diacritics would be helpful for the pronunciation however, it would mis-lead the

machine learning where sometimes a single term would be considered two different words if the

diacritics have been formed differently. For instance, the two terms ‘ُُالأمَم’ and ‘َُالأمَم’ refers to the same

meaning which is ‘nations’, but the machine would consider them as different terms because they have

different diacritics.

Hence, it is better to get rid of these diacritics in order to unify the embedding of words that have

the same meaning. Table 3 depicts an example of Harakat elimination.

Table 3 Example of Harakat elimination

Word with Harakat Word without Harakat

 دعا دعََا

 مندوب مَندوبُُ

 فرنسا فرنسَا

 لدى لِدى

 الأمم الأممُُ

 المتحدة المتحِدةَ

 جان جَان

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-028

 مارك مَارك

 مجلس مَجلِسَُ

 الأمن الأمنُِ

 الى الى

 اعلان اِعْلانُِ

 هدنة هُدنة

 انسانية انِسانية

To apply Harakat removal, a python library known as PyArabic introduced by (Zerrouki, 2010) was

utilized.

Tashkeel Diacritic Removal

Another type of Arabic diacritics is the Tashkeel which has been used to indicate the word structure

within a sentence such as subject, object or verb. Such Tashkeel is also mis-leading for the machine

learning in which two identical terms in meaning but with different Tashkeel would be considered as

different terms. Hence, it is better to get rid of these Tashkeel diacritics. Table 4 represents such

process.

Table 4 Tashkeel elimination example

Tashkeel Woord Word without Tashkeel

 دعا دعا

 مندوب مندوبُ

 فرنسا فرنسا

 لدى لدى

 الأمم الأممُ

 المتحدة المتحدة ُ

 جان جان

 مارك مارك

 مجلس مجلسا ُ
 الأمن الأمنُ

 الى الى

 اعلان اعلانُ

 هدنة هدنةُُ

 انسانية انسانيةُُ

To apply Tashkeel removal, a python library known as PyArabic introduced by (Zerrouki, 2010)

was utilized.

Tatweel Characters Removal

Arabic words can be written in various ways. One of the ways that Arabic word can be written with

is the Tatweel characters which usually indicate an exaggeration within the context. For instance, the

word ‘فرنسا’ which means ‘France’ can be written as ‘ نســــافر ’ in order to give an exaggeration within

the context. Such exaggeration can be represented by giving the extra characters of ‘ــــــ’. However,

adding these characters would differentiate the treatment of the same word but with such extra

characters. The machine would give different embedding for the same words with different Tatweel

characters. Hence, it is necessary to get rid of these characters to unify the treatment of terms. Table 5

represents this process.

Table 5 Example of Tatweel characters elimination

Word with Tatweel Characters Word without Tatweel Characters

 دعا دعــــــا

 مندوب منـــــدوب

 فرنسا فرنســــا

 لدى لــــــدى

 الأمم الأمــــــم

 المتحدة المتحـــــدة

 جان جــــــــان

 مارك مــــــارك

لســـــمج مجلس

 الأمن الأمــــــن

 الى الـــــــــى

 اعلان اعـــــلان

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-028

 هدنة هدنــــــــة

 انسانية انســـانية

To apply Tatweel removal, a python library known as PyArabic introduced by (Zerrouki, 2010) was

utilized.

Word Embedding

In recent years, the text analysis field has witnessed a revolutionary progress in terms the semantic

techniques. One of these techniques is the word embedding which aims to input words from a

particular context through a specific Neural Network to give each word a distinct embedding that refers

to its meaning within the context (Xing et al., 2015). Such neural network is called Word2Vec which

composed of two main topologies; Skipgram and Continuous Bag of Words (CBOW). The former

topology works by inputting a word and the aim is to predict its surrounding words. In contrast, the

latter topology works by inputting the surrounding words to predict the center word.

In fact, both topologies have their own pros and cons which make them suitable applications. For

instance, skipgram has shown superior performance in applications such as named entities recognition

and relation extraction according to some authors (Chiu et al., 2016). This is because in skipgram, the

representation of a focus word is learnt by predicting every other context word in the window

independently, with the prediction error of each context word back-propagated to the target word. This

might provide better vectors to be learnt as a focus word is trained over more data, but with less

smoothing over contexts. Another factor that makes the skip-gram is much suitable is that the state of

the art in Arabic NER have used it (Attia, et al., 2018; Helwe and Elbassuoni, 2019). Therefore, in this

study, the skipgram will be considered for the word embedding.

 However, the word embedding model can be created using two main approaches including

corpus-based and pre-trained. Such approaches can be described in the next subsections.

Corpus-based Embedding Model

This approach aims at implementing the word embedding model from the scratch where a specific

corpus that is related to a particular domain of interest is being used within the training. Creating the

model can be represented by preparing a corpus of text in which the terms of such corpus will

processed through the Word2Vec architecture. Assume a corpus C text that contains several words as

follow:

C = “دعاُمندوبُفرنساُلدىُالأممُالمتحدة”

The first task before processing the words through the Word2Vec architecture is to get the unique

terms of the corpus and represent them via one-hot encoding paradigm. Such paradigm aims to

articulate the distinctive terms as attributes and instances where the correspondences among terms will

be depicted as ‘1’ and the mis-match terms are depicted as ‘0’. Table 6 depicts the one-hot encoding

representation of the corpus C.

Table 6 One-hot encoding

Terms/

Terms

 المتحدة الأمم لدى فرنسا مندوب دعا

 0 0 0 0 0 1 دعا

 0 0 0 0 1 0 مندوب

 0 0 0 1 0 0 فرنسا

 0 0 1 0 0 0 لدى

 0 1 0 0 0 0 الأمم

 1 0 0 0 0 0 المتحدة

As shown in Table 6 each word has a vector with a length equivalent to the number of distinctive

terms inside the corpus. For instance, the word ‘دعا’ would have a vector of:

  1 0 0 0 0 0 دعا

To obtain the embedding of ‘دعا’ word, the one hot vector of such word will be processed through

the Word2Vec as depicted in Figure 2.

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-028

Figure 2. Inputting the word ‘دعا’ via the Word2vec architecture

As shown in Figure 2, every neuron from the input layer is attached with all the neurons from the

output layer. Every attachment is associated with a weight that randomly generated. To compute the

output neurons’ values, Equation 1 depicts the general formula of neural network weights

multiplication (Srivastava et al., 2014):

𝑂𝑘 = ∑ 𝐼𝑗 × 𝑊𝑖
(1)

Where 𝐼𝑗 is an input neuron and 𝑊𝑖 is the corresponding weights that linked it with the output 𝑂𝑘 .

Assuming that the output neurons are computed using Equation 1, Figure 3 depicts the results of

embedding.

Figure 3. Output neurons computation

As depicted in Figure 3, based on the results of the output neurons’ values, the embedding for the

word ‘دعا’ can be represented as:

 2.991 0.818- 1.766 0.283 1.899 0.334 ’دعا‘

Every word embedding model has its own parameter setting. Therefore, it is necessary to highlight

the parameter values used in this paradigm. Table 7 displays the parameter values and their description.

1

0

0

0

0

0

O1

O2

O3

O4

O5

O6

Input:

 (100000) دعا

Output:

Embedding

1

0

0

0

0

0

0.334

1.899

0.283

1.766

-0.818

2.991

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-028

Table 7 Corpus-based parameter settings

Parameter Description Value

Documents No. The number of sentences included in ANERcorp dataset 4,929

Token No. The number of all words inside the ANERcorp dataset 148,564

Dimension The number of distinctive tokens within the corpus 300

Window size The number of surrounding words considered 5

Minimum count Minimum time of occurrence for the terms considered in the dimension 2

Epochs Number of iterations of the training 10

As depicted in Table 7, the parameters have been adjusted to build the model. The values shown in

the table is the standard ones used by most of the literature (Rong, 2014).

The corpus-based model has some advantages such as the domain-specific learning of terms in

which the corpus used to build the embedding would have terms that are related to specific domain of

interest. This would make the model is accurate to predict terms from the same domain. Yet, this would

be a limitation when the model is asked to predict a term related to another domain. Furthermore, the

corpus-based model suffers of the parameter tuning required to get the best values of parameters

(Goldberg and Levy, 2014).

Pre-Trained Embedding

The corpus-based model has multiple limitations thus, researchers have attempted to overcome

these limitations. One of the successful attempts to solve the problem of parameter tuning is to

experiment various parameter values in order to determine the most accurate parameters. Therefore,

tremendous efforts have been dedicated to provide a model that is well-trained and fine-tuned and save

such model for future uses, this approach is called pre-trained model.

In this same manner and unlike the corpus-based, the pre-trained model can be trained on millions

of terms that are related to various domain of interests in order to solve the problem of limited contexts

lies in the corpus-based. Hence, such pre-trained model would be exploited easily by many researchers

and for several applications without bothering building the model from the scratch.

 Unlike English language where tremendous pre-trained embedding models have been

introduced in recent years, few studies have addressed the pre-trained model for Arabic language.

However, recently, the study of Soliman et al. (2017) has shown a great effort to release a pre-trained

model for Arabic language. The model has been trained on Wikipedia Arabic webpages in which 1.8

million documents with 2225.3 million tokens have been considered. Table 8 displays the values of the

parameters used by such model.

Table 8. Pre-trained parameter settings

Parameter Value

Source Arabic Wikipedia

Document No. 1.8 million

Token No. 2225.3 million

Dimension 300

Window size 5

Minimum count 500

Epochs 1000

As depicted in Table 8, the pre-trained model’s parameters demonstrate a large number of trained

token and documents. This can generate a robust embedding that take into the account numerous

contexts. In addition, the model parameters have been accurately adjusted. According to Soliman et al.

(2017), the value of 300 for the dimension was demonstrated higher accuracy in text classification

compared to other values such as 100 and 200. Whereas, the value 5 of window words is proven widely

to be semantically efficient in which the context can be captured from at least five words. Moreover, in

terms of the minimum count, Soliman et al. (2017) concluded that a value of 500 would contribute

toward avoiding insignificant terms that have occurrences less than 500. Eventually, a large value such

as 1000 for epoch numbers would help the neural network to be error-tuned. However, according to

Levy et al. (2015), the pre-trained model suffers of a drawback called out-of-vocabulary when the

model encounter a word in the testing that has no embedding stored in the model.

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-028

Proposed Combination Embedding Model

Due to the limitations existed in both the corpus-based and the pre-trained models, this research

proposes a combination between the two models where the incorporation between them would

overcome some limitations. Such idea of embedding combination has been inspired by some studies

that showed superior performance when combining different embedding models. For instance, the

study of Amiri & Shobi (2017) has shown an improvement in classifying tweets when combining

Word2Vec with Doc2Vec. Therefore, this study will overcome the out-of-vocabulary drawback by

using the corpus-based model, while overcoming the problem of parameter-tuning by taking the

advantage of the pre-trained model. Figure 4 represents the workflow of the combined embedding

where several check conditions are being considered.

Figure 4. The Integrated embedding workflow

Word

term is number?

0.0 0.0 0.0 ……

Dimension = 300

Yes

term is special

character?

No

1.0 ……

Dimension = 300

Yes

No
1.0 1.0

term in pre-

trained model

0.23 ……

Pre-trained Embedding Dimension = 300

Yes

No 0.66 0.78

0.43 ……

Corpus-based Embedding Dimension = 300

0.21 0.11

term in corpus-

based model

Yes

3.0 ……

Dimension = 300

3.0 3.0

No Cop
yri

gh
t@

FTSM

PS-FTSM-2020-028

As depicted in Figure 4, the flowchart starts by checking whether the word is a number or not. If

yes, a vector of 300 dimension is being initiated where all its values are set to 0.0 in order to provide a

vector with real numbers. The reason behind unifying all the digit-words with a specific embedding is

that the separate treatment of digit-words would not facilitate determining NEs.

 After that, if the word was not number, another check-up condition is being used to check

whether the word is a special character or not. If yes, a vector of 300 dimension is being initiated where

all of its values will be set to 1.0 in order to provide a vector with real numbers. The reason behind

unifying all the special characters with a single embedding is that it would facilitate the machine to

recognize such word as not NE.

 Then, if the word was not a special character, another check-up condition will be applied to

check whether the word is existing in the pre-trained model or not. If yes, the embedding of such word

will be brought from the pre-trained model where its vector length would be 300.

 Yet, it is worth mentioning that the pre-trained model is suffering from the out-of-vocabulary

problem where the word would have no embedding inside the model. Therefore, this study will utilize

the corpus-based model in order to get the embedding of the word with a vector of 300 dimension.

 Eventually, if the word is not existing inside the corpus-based model (which is unlikely

probability), a vector of 300 dimension will be initiated and its values will be set to 3.0.

Classification

To accommodate the classification, the K-Nearest Neighbor (KNN) is used to train on the

produced embedding and tested by its ability to predict a subset of the data. This study has

used KNN because it is based on identifying the most similar instance from the training to the

testing instance (Khamar, 2013). Since there are different embedding used (i.e. corpus-based

and pre-trained) KNN will suite the variations of embedding between training and testing

portions.

RESULT

The results of classification have been evaluated using precision, recall and f-measure.

Every model has been evaluated separately with KNN classification. Table 9 shows the

results.

Table 9. Weighted F-measure comparison

Entity

F-measure

Corpus-based Pre-trained Proposed model

PERS 0.5 0.69 0.73

LOC 0.68 0.68 0.75

ORG 0.4 0.39 0.53

MISC 0.35 0.29 0.33

O 0.95 0.96 0.97

Weighted Average 0.89 0.91 0.93

Greatest f-measure obtained for classifying person entity was got by the proposed model

where the f-measure was 0.73 compared to 0.69 obtained by the pre-trained and 0.5 obtained

by the corpus-based model. Apparently, the use of pre-trained model has outperformed the

corpus-based because it has much sophisticated embedding since it has been training on huge

number of words and context. Yet, the proposed model has outperformed both the pre-trained

and the corpus-based because it has took the advantage of both models. It exploited the

capability of pre-trained model in terms of generating sophisticated embedding for the word,

as well as, it exploited the capability of corpus-based in terms of ‘out-of-vocabulary’ problem

that exists in the pre-trained model.

Similarly, the highest f-measure obtained for classifying location entity was got by the

proposed model where the f-measure was 0.75 compared to 0.68 obtained by the pre-trained

and 0.68 obtained by the corpus-based model. Apparently, the proposed model has

outperformed both the pre-trained and the corpus-based because it has took the advantage of

both models. It exploited the capability of pre-trained model in terms of generating

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-028

sophisticated embedding for the word, as well as, it exploited the capability of corpus-based

in terms of ‘out-of-vocabulary’ problem that exists in the pre-trained model.

For the organization entity, the corpus-based model has outperformed the pre-trained

model where it got 0.40 compared to 0.39. The reason behind this outperformance is that the

corpus-based trained on the ANERcorp dataset where the organization entities inside such

dataset were associated with specific fields like politics. While the pre-trained model has been

trained on various fields therefore, it revealed weaker performance regarding organization

entities classification. Yet, the proposed combined model has outperformed the two models

by gaining 0.53 of f-measure. This is because it gained the advantages of both models.

For the MISC entity, the highest f-measure was obtained by the corpus-based model where

the f-measure was 0.35 compared to 0.29 achieved by the pre-trained model and 0.33

achieved by the proposed model. The reason behind this is that the pre-trained model has

been trained on wide range of domains, while the ANERcorp contains specific currencies.

Since the proposed model is prioritized the pre-trained model firstly and then the corpus-

based thus, the proposed model has been impacted by the poor performance of the pre-trained

model.

 For the non-NEs, the proposed combined model obtained the highest f-measure of

0.97 compared to 0.95 obtained by the corpus-based and 0.96 obtained by the pre-trained

model.

 The outperformance that the proposed combined model has made for all classes

(excepts the MISC), has led to superior results regarding weighted average f-measure of the

combined model. This has been depicted where the proposed model obtained a weighted

average f-measure of 0.93 compared to 0.91 obtained by the pre-trained model and 0.89

obtained by the corpus-based model. Figure 5 represents the results of the three models based

on all the classes.

Figure 5. Representation of entities for the three models

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PERS LOC ORG MISC

F-
M

EA
SU

R
E

COMPARISON BETWEEN THE
MODELS

Corpus-based Pre-trained Proposed model

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-028

CONCLUSION

This study proposed an integrated of corpus-based and pre-trained word embedding model

for Arabic NER task. The proposed integrated model has outperformed the individual

application of corpus-based and pre-trained model.

Examining further embedding topologies such as character embedding and document

embedding would be a useful research. Although these topologies are expensive regarding

time and resources usage yet, they might give better results.

REFERENCES

Abdallah, et al. 2012. 'Integrating rule-based system with classification for Arabic named

entity recognition', Computational Linguistics and Intelligent Text Processing, Springer,

pp. 311-322.

Al-Shoukry and Omar. 2015. Arabic named entity recognition for crime documents using

classifiers combination, International Review on Computers and Software, Vol. 10 No. 6,

pp. 628-634 (Access 2015

Ali, et al. 2019. Boosting Arabic Named-Entity Recognition With Multi-Attention Layer,

IEEE Access, Vol. 7, pp. 46575-46582 (Access 2019

Amiri and Shobi. 2017. A link prediction strategy for personalized tweet recommendation

through doc2vec approach, Research in economics and management, Vol. 2 No. 4, pp.

63-76 (Access 2017

Attia, et al. 2018. Ghht at calcs 2018: Named entity recognition for dialectal arabic using

neural networks, Proceedings of the Third Workshop on Computational Approaches to

Linguistic Code-Switching, pp. 98-102.

Awad, et al. 2018. Arabic Name Entity Recognition Using Deep Learning, Springer

International Publishing, Cham, pp. 105-116.

Benajiba, et al. 2007. 'Anersys: An arabic named entity recognition system based on

maximum entropy', Computational Linguistics and Intelligent Text Processing, Springer,

pp. 143-153.

Chiu, et al. 2016. How to train good word embeddings for biomedical NLP, Proceedings of

the 15th workshop on biomedical natural language processing, pp. 166-174.

Goldberg and Levy. 2014. word2vec Explained: deriving Mikolov et al.'s negative-sampling

word-embedding method, arXiv preprint arXiv:1402.3722, (Access 2014

Helwe and Elbassuoni. 2019. Arabic named entity recognition via deep co-learning, Artificial

Intelligence Review, Vol. 52 No. 1, pp. 197-215 (Access 2019

Khalifa and Shaalan. 2019. Character convolutions for Arabic Named Entity Recognition

with Long Short-Term Memory Networks, Computer Speech & Language, Vol. 58, pp.

335-346 http://www.sciencedirect.com/science/article/pii/S0885230818301657 (Access

2019

Khamar. 2013. Short text classification using kNN based on distance function, IJARCCE

International Journal of Advanced Research in Computer and Communication

Engineering. Government Engineering College, Modasa.(ISSN Print: 2319-5940 ISSN

Online: 2278-1021), (Access 2013

Levy and Goldberg. 2014. Dependency-based word embeddings, Proceedings of the 52nd

Annual Meeting of the Association for Computational Linguistics (Volume 2: Short

Papers), pp. 302-308.

Levy, et al. 2015. Improving distributional similarity with lessons learned from word

embeddings, Transactions of the Association for Computational Linguistics, Vol. 3, pp.

211-225 (Access 2015

Rong. 2014. word2vec parameter learning explained, arXiv preprint arXiv:1411.2738,

(Access 2014

Shaalan. 2014. A survey of Arabic named entity recognition and classification,

Computational Linguistics, Vol. 40 No. 2, pp. 469-510 (Access 2014

Cop
yri

gh
t@

FTSM

http://www.sciencedirect.com/science/article/pii/S0885230818301657

PS-FTSM-2020-028

Shabat and Omar. 2015. Named Entity Recognition in Crime News Documents Using

Classifiers Combination, Middle-East Journal of Scientific Research, Vol. 23 No. 6, pp.

1215-1221 (Access 2015

Soliman, et al. 2017. Aravec: A set of arabic word embedding models for use in arabic nlp,

Procedia Computer Science, Vol. 117, pp. 256-265 (Access 2017

Srivastava, et al. 2014. Dropout: a simple way to prevent neural networks from overfitting,

The Journal of Machine Learning Research, Vol. 15 No. 1, pp. 1929-1958 (Access 2014

Xing, et al. 2015. Normalized word embedding and orthogonal transform for bilingual word

translation, Proceedings of the 2015 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, pp. 1006-

1011.

Zerrouki. 2010. Pyarabic, an arabic language library for python.

Cop
yri

gh
t@

FTSM

