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Abstract 

TTS (Text-to-Speech) represents one of the crucial factors for human and machine communication and 

interaction. Therefore, this technique transforms written text into vocalized audio and thus, an 

instrument like a robot can communicate by using speech with its surroundings. Substantially, the TTS 

system consists of two phases, First, the Text-processing phase in which the input text is converted into 

a phonetic characterization alongside the optional meta-data such as stress tags. The second phase 

represents the creation of an audio waveform throughout the phonetic presentations.  

The main objective of this study is to create an End-to-End Speech Processing Toolkit (ESPnet) that 

supports the Arabic languages. In the Arabic language, ESPnet is a brand-new project that combines 

prosperous automatic speech recognition-related basics, frameworks, and systems to encourage and 

verify the suggested front-end execution, for instance, speech development and segregation. There are 

a few applications that support TTS for the Arabic language that is not flexible like ESPnet. Therefore, it 

is necessary to reinforce the Arabic language throughout ESPnet to support various applications that 

provide text-to-speech for the Arabic language. All-in-one recipes will be provided embracing data pre-

processing, factor extraction, training, and evaluation channels for a broad range of standard databases. 

This study displays the plan of the toolkit, some important functionalities, specifically the speech 
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recognition integration that separates ESPnet from further open-source toolsets, and experimental 

results via principal benchmark datasets. 

 

LIST OF ABBREVIATIONS: One-Dimensional, Artificial Intelligence, Application Programming 

Interface, Automatic Speech Recognition, Convolutional Neural Network, 2-Dimentional Convolutional 

Layers, Conditional Random Fields, Connectionist Temporal Classification, Deep Learning, Deep Neural 

Network, End-to-End TTS, End-to-End Speech Processing Toolkit, Grapheme-to-phoneme, Gated 

Recurrent Unit, Graphical User Interface, Hidden Conditional Random Field, Markov Model, Hyper Text 

Transfer Protocol, Long Short-Term Memory, Letter-To-Sound, Mean Opinion Score, Machine 

Translation, Natural Language Processing, Neural Network, Non-Sequential Greedy Decoding, 

Nonstandard Words, Out Of Vocabulary, Phoneme Error Rate, Part-of-Speech, Recurrent Neural 

Network, Speech Development and Separation, Speech Language Understanding, Speech Translation, 

Text-to-Speech, Universiti Kebangsaan Malaysia, Unified Resource Link, Word Error Rate, Weighted 

Finite-State Transduce  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



PS-FTSM-2023-018 

1 INTRODUCTION 

Synthetic voice is provided by Text-to-Speech (TTS) technology through textual data only. Hence, it 

serves in human-machine communication as an additional natural interface. TTS can help humans in 

various applications such as educational and medical applications. Overall, modern TTS is based on 

statistical parametric and unit selection strategies. Specific observation has been granted to Deep 

Neural Network (DNN)-based TTS recently because of its benefits in terms of flexibility and robustness.  

There are two main stages for TTS to be achieved: Text Normalization and Grapheme-to-phoneme (G2P) 

Conversion. G2P conversion is mainly the chore of forecasting the pronunciation of a word given in its 

written or graphemic structure. It consists of a crucial fragment of both TTS and automatic speech 

recognition (ASR) systems. The G2P framework’s quality has a huge impact on the quality of speech. 

Flawed G2P conversion leads to an abnormal pronunciation or even obscure synthetic talk.  

TTS platforms require working with texts that include non-standard terms, followed by numbers, 

currency, dates, and abbreviations. Based on this, text normalization is the chore function for a TTS 

setup to transform written-form contents into spoken-form strings. ESPnet has become a developed 

technology primarily in speech processing sections through open-source applications that encourage 

both TTS and ASR. Furthermore, the new open-source End-to-end speech processing toolkit intends to 

offer an endless neural end-to-end system for speech proceeding. 

ESPnet offers a completed architecture for speech recognition and several speech processing 

examinations through using chainer and Pytorch as a deep learning engine. Also, it offers Kaldi-style 

data processing, feature extraction/format, and recipes. Generally, some of the fundamental features of 

the Kaldi style process for TTS and ASR. 

The transducer based on end-to-end processing is the chore of ESPnet. Recurrent Neural Network-

based (RNN-based) encoder and decoder consist of one of the main structures of ESPnet. RNNs master 

the sequential characteristics of information and implement techniques to forecast the next situation. 

They are used in extensive acquiring and in the enhancement of frameworks that affect the mobility of 

neurons in the human brain. RNN applies feedback loops to implement a sequence of information that 

shapes the result. Such feedback loops let the data be stored for a certain period. This influence is 

usually identified as memory. RNN uses cases that aim to relate to linguistic patterns where the 

succeeding letter in a word or the following word in a sentence is anticipated via the information 
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preceding it. Long short-term memory (LSTM) networks implement standard and private units which are 

considered a type of RNN. LSTM units involve a "memory cell" that stores data in memory for long 

periods. This type of RNN can be taught in different languages, such as the Arabic language that we 

intend to add to the ESPnet. 

2. LITERATURE 

 

2.1 TTS and ESPnet 

TTS is considered as an additional natural interface between humans and machines communication. 

Modern TTS is based on statistical parametric and unit selection strategies. Specific observation has 

been granted to DNN-based TTS recently because of its benefits in terms of flexibility and robustness. 

TTS systems involve two sub-systems: speech generation and NLP. TTS platforms require working with 

texts that include non-standard terms, followed by numbers, currency, dates, and abbreviations.  

ESPnet has become a developed technology primarily in speech processing sections through open-

source applications that encourage both TTS and ASR. Furthermore, the new open-source End-to-end 

speech processing toolkit intends to offer an endless neural end-to-end system for speech proceeding. 

ESPnet provides various well-known techniques such as RNN, TDNN, and many others… ESPnet offers a 

completed architecture for speech recognition and several speech processing examinations through 

using chainer as a deep learning engine. 

DL is the heart of ESPnet. It is the method used to train ESPnet for new languages, such as the Arabic 

language in our case. DL is represented through the RNN network. Through training the RNN we are 

changing its weights to give us the expected result. Each iteration of data in the RNN will get results 

closer to expected. Thus, there will be a stage where the error rate of the network is negligible. The 

input data for this RNN is wave sound data processed in an understandable way for the network. 

However, the training output is the sentence related to the wave data. 

This Literature review lays out the required attributes, characteristics, and strategies of TTS for this 

thesis. It consists of a deep review in which identical fields have been added also. 

First, a general introduction is displayed followed by the synthesizer technologies in section 2.2. Second, 

deep learning methods are explained in section 2.3 followed by Recurrent Neural Networks (RNNs) in 
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section 2.4. Long-Short Term Memory (LSTM) and Bidirectional Long-Short Term Memory (Bi-LSTM) 

represent the subsections of RNNs examined thoroughly. Then, section 2.5 analyzes the Convolutional 

Neural Networks, an exclusive type of neural network for developing information. End-to-end training is 

examined in section 2.6 to merge various components in the computational graph of the neural network 

and maximize it. Finally, Tacotron which is an end-to-end generative TTS model was explained. Finally, 

the Attention Layer is represented. 

 

2.2 SYNTHESIZER TECHNOLOGIES 

Speech Synthesis is the presentation of human speech by a computer. For several years, an automatic 

generation of speech wave types has been developed. New developments in speech synthesis have 

been created with increased intelligibility, but the naturalness and the quality of the sound remain a 

challenging issue. Several issues and challenges in Speech Synthesis exist such as Text to phoneme, text 

normalization, etc. 

 

2.2.1.  TEXT NORMALIZATION  

In speech and language technologies, including its various types of tasks, text normalization is one of the 

key parts. Generally, text normalization frameworks transform a dictated representation of a text into a 

type of how that context should be read aloud. 

Recently, personal assistant applications offered appropriate responses based on customer inquiries 

through NLP techniques. The primary stage for these applications is the normalization of the query. 

Several previous works used mainly custom-built rules where such rules are amended to specific 

domains of these platforms. Also, weighted finite-state transducers (WFSTs) were used. 

The language information contains a series of data like streams of characters and arrangement of words. 

These characteristics affect the NLP techniques where arithmetic models can easily interact with 

information. Recently, deep learning has accomplished a futuristic performance in various NLP-

associated domains. Consequently, additional information is needed to use deep learning techniques. 

Nevertheless, to train and operate such techniques requires reduced linguistic expertise. 

Lately, for text normalization, double encoder arrangements were examined. They are called Siamese 

models which involve a set of encoders that encrypt pairs of inputs into vectors, and a framework to 
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compare the resemblance between the two inputs. Such a model necessitates training of both negative 

and positive information, and it was employed from the previous training and test data of the 2017 

Kaggle competition on text normalization. 

Furthermore, the contextual seq2seq model was suggested, which utilizes a sliding window and RNN. In 

this framework, bi-directional GRU is implemented for both the encoder and the decoder, and the text 

words are categorized with “<self>”, leading the model to differentiate the nonstandard words (NSW) 

and the text. To rectify the results of a connectionist temporal categorization method in Mandarin ASR, 

a transformer-based phonetic correction framework is presented. 

2.2.2. Grapheme-to-Phoneme Conversion 

The phonetic transcription has been generated from the written type of the words because of the 

procedure for grapheme-to-phoneme transformation. The phonetic type of the word is called phoneme 

sequence (or phonemes), whereas the spelling form of the word is called grapheme sequence (or 

graphemes). In ASR platforms and TTS, it is crucial to enhance phonemic representation. Pronunciation 

vocabulary lists represent the middle layer among acoustic and language frameworks. For an advanced 

speech identification task, the overall platform of the performance is based on the quality of the 

pronunciation element. Particularly, the framework’s performance is based on G2P efficiency. 

During a long period, G2P alteration has been examined. Rule-based G2P frameworks utilize a wide 

range of grapheme-to-phoneme controls. Linguistic expertise is the fundamental step in expanding such 

a G2P model. Primary grapheme-phoneme sequence conjunction has been established through such 

frameworks to calculate a combined n-gram language system over the chain. Afterward, Hidden 

Conditional Random Field (HCRF) strategy was created where the arrangement between grapheme and 

phoneme progression is shaped through unrevealed features. In general, the HCRF representation 

provides a significant competitive outcome, but training such a model requires a challenging memory 

and intensive computation. 

In G2P conversion also, neural networks have been applied. They consist of robust with regards to 

spelling mistakes and OOV words where they generalize very well. Besides, they can be smoothly 

combined into end-to-end TTS/ASR platforms. A TTS structure (Deep Voice) is established, which was 

built totally from DNN. Deep Voice is the main step to truthfully end-to-end neural speech combination. 

Therefore, the whole quality of the platform is increased through the G2P system that is collectively 

trained with additional crucial elements of the speech synthesizer and recognizer. 
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Through sequence-to-sequence learning, the decoding phase is generally based on sequences, from left 

to right one step at a time, and the results from the preceding stages are implemented as decoder data. 

Based on the task and the system, sequential decoding can negatively impact the outcomes. For G2P, 

the non-sequential greedy decoding (NSGD) strategy was examined and merged through a complete 

convolutional encoder-decoder structure. 

Lately, to improve the correctness through distilling the comprehension resulting from further unlabeled 

information and decreasing the framework size, thus sustaining the maximum accuracy, a token-level 

collection distillation for G2P transformation was suggested. A conversion strategy was utilized to 

increase the correctness of G2P transformation furthermore. In addition, the DNN-based G2P rectifier 

leads to complete well in languages through irregular pronunciation followed by regular pronunciation 

languages that can be efficiently obvious through various transcription rules. 

 

2.3  Deep Learning Methods  

To build a strong deep learning strategy, several methods are employed encompassing adaptive learning 

rate, dropout, batch normalization, etc... The following consist of the key aspects of these frameworks.  

Adaptive learning rate: This method consists of altering the learning rate to enhance performance and 

decrease the training time.  

Dropout: The dropout strategy is another step to cope with overfitting in thorough neural networks. 

During training, this strategy is used through random dropping components along with the necessary 

parameters in deep neural channels.  

Batch normalization: To normalize activations in the middle layers of DNN, the batch normalization 

technique is used. It leads to accelerate training and makes learning easier. Through an applied modern 

image classification framework, batch Normalization accomplishes the same accuracy by 14 times. 

Residual connections: To build identity mapping, residual communications and blocks, components are 

created through a set of collected layers, by adding the inputs to their outputs.  

Transfer learning: During transfer learning, a framework trained on a specific task is utilized on another 

connected task. The acquired knowledge while solving a specific issue can be moved to another channel, 

which consists of further training on an associated issue. In various scenarios, there is a lack of 
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information to train the models. To start with a pre-trained framework can lead to reach greater 

outcomes, whereas training a framework from the beginning through insufficient data might result in 

reduced performance. 

Max-Pooling: A filter is predetermined in a max-pooling, and this filter is utilized over the sub-areas of 

the input by taking its highest values. Through max-pooling, dimensions and the computational process 

can be lower. 

 

2.4 Recurrent Neural Networks (RNNs)  

In several NLP tasks, recurrent neural networks (RNNs) demonstrated significant outcomes. Through 

time-series and sequential databases, they are able of learning attributes and long-term reliance. RNNs 

and their alternatives; Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) have shown 

promising progress in several NLP tasks.  

 

2.4.1 Long-Short Term Memory (LSTM) 

Long Short-Term Memory networks (LSTM) represent one of the exclusive types of RNN, accomplish a 

learning long-term reliance. This module encompasses a unique memory cell that can save previous 

data. An LSTM unit grabs as input its past cell and unrevealed states and outputs its recent cell and 

concealed states. More precisely, the LSTM unit is formed of 4 gates, working in an appropriate way.  

 

The following consist of the gates of an LSTM unit:  

• input gate layer: 𝑖𝑡 = σ(Wixt + Uiht−1 + bi)     

• forget gate layer: 𝑓𝑡 = σ(Wfxt + Ufht−1 + bf)  

• output candidate layer: 𝑂𝑡 = σ(Woxt + Uoht−1 + bo)  

• cell state candidate layer: �̃�𝑡 = tanh(Wcxt + Ucht−1 + bc)     
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Figure 1 A basic representation of the LSTM cell 

The input gate 𝑖𝑡 identifies the level to which the input data is added to the memory. 

The forget gate 𝑓𝑡 defines the degree to which the current memory is forgotten.  

The output gate of 𝑂𝑡 of every LSTM unit at time 𝑡 is calculated to receive the output memory.  

 

Subsequently, the data in the memory cell is upgraded via half forgetting of the database gathered in 

the memory cell 𝑐𝑡−1 and prepared throughout �̃�𝑡. And finally, the output concealed state ℎ𝑡  is updated 

through the calculated cell state 𝑐𝑡. LSTM successfully escapes the fading gradient issue while comparing 

with the basic RNN through initiating the gate process, which is beneficial in coping with long-term 

dependencies.  

2.4.2 Bidirectional Long-Short Term Memory (Bi-LSTM)  

Bidirectional LSTM (Bi-LSTM) operates input series in both directions via 2 sub-layers to consider the 

whole input conditions. For each of the time steps, these 2 sub-layers calculate the future hidden 

sequence ℎ⃗ and the previously hidden sequence ℎ ⃗, for every time step. The arrow that points in both 

directions (right and left) represents the backward layer.  

One disadvantage of Bi-LSTM is that before it makes predictions, the whole series should be available. In 

various applications like real-time speech recognition, the whole announcement may not be available, 

therefore, the Bi-LSTM is not accurate. However, for various NLP applications where at the same time 

the whole phrase is available, the standard Bi-LSTM design is efficient. Furthermore, Bi-LSTM is slower 

than LSTM because the outcomes of the onwards pass must be accessible for the previous pass to 

continue. 
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that points to the right represents the forward layer, however, the arrow that points in both directions 

(right and left) represents the backward layer.  

 

2.5 Convolutional Neural Networks  

Convolutional Neural Networks (CNNs) represent an exclusive type of neural network for developing 

data that has a transitory or conceptual relationship. CNN's are involved in several domains such as 

(“image, object and handwriting recognition, face verification, machine translation, speech synthesis”. 

The construction of vanilla CNN is built on various layer types where every layer brings out a particular 

function as displayed in Fig 4.  

 

Figure 2 The general architecture of CNN 

The basic component of the CNN design is the convolution layer that accelerates via the input with one 

or more filters, executing a complexity operation between every input field and the filter. The outcomes 

will be gathered in activation maps that are also called feature maps, which are the convolution layer 

output. Crucially, activation maps can encompass characteristics that several kernels did bring out.  

After a convolutional layer, a pooling layer is often used. The primary benefit of applying the pooling 

strategy is that it exceptionally decreases the number of trainable dimensions and initiates translation 

invariance. The most frequent way to do pooling is to implement a maximal operation to the outcomes 

of each filter. Nevertheless, there are several types of pooling methods such as stochastic pooling, 

fractional max-pooling, and averaging pooling.  

Deep learning strategy includes various developing types of CNN, such as “1D-CNN, 2D-CNN, and 3D-

CNN”. Various tasks that employ images or videos as inputs represent a more similar use of 2D-CNNs 
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than 1D-CNNs and 3D-CNNs. CNN accomplish a very successful representation learning where it consists 

of the primary reasons to make convolutional neural networks superior to past methods. It also analyzes 

spatial and temporal connections. and modeling together. Therefore, the model turns spectrally 

tolerant: common representations are acquired in various areas of the input, and the whole number of 

dimensions can be crucially lowered. 

 

2.6 End-to-end training  

Increased accuracy in several application domains can be achieved, encompassing NLP through end-to-

end training of deep learning frameworks via a large database. The main goal of end-to-end training is to 

merge various elements in the computational graph of the neural network by maximizing it as a total.  

In several tasks, end-to-end solutions have reached significant outcomes. This end-to-end adversarial 

TTS works on either pure text or raw, such as temporally inactive phoneme input sequences, and 

performs raw speech waveforms as output. These frameworks remove the common intermediate 

bottlenecks available in most modern TTS engines through sustaining learned intermediate feature 

representations via the network. A recent TTS framework, called Tacotron, was introduced, an end-to-

end generative TTS standard that synthesizes speech automatically from characters. The design of 

Tacotron is developed through integrating a normalizing flow into the autoregressive decoder. In other 

words, they implemented a text normalization pipeline to map input text into a series of phones.  

 

 

2.6 Tacotron 

 

Usually, a TTS synthesis system contains multiple layers, for instance, a text analysis frontend, an 

acoustic framework, and an audio synthesis model. Establishing such elements usually needs broad 

domain expertise and might include brittle design options. Researchers worked on an end-to-end 

generative TTS model, Tacotron, that arranges speech automatically from attributes through a seq2seq 

model with attention. Figure 3 represents the model, which encompasses an encoder, an attention-

based decoder, and a post-processing net. Given <text, audio> sets, the system can be trained totally 

from the beginning with arbitrary initialization. Furthermore, since Tacotron provides speech at the 

frame level, it’s significantly quicker than sample-level autoregressive strategies. Tacotron generates a 

“3.82” mean opinion score (MOS) on a US English eval set through a simple waveform synthesis tool.  

 



PS-FTSM-2023-018 

State-of-the-art TTS pipelines are complicated. For instance, it is common for statistical parametric TTS 

to have a text frontend extracting several linguistic characteristics, a duration framework, an acoustic 

attribute prediction model, and a detailed signal-processing-based vocoder. These elements depend on 

extensive field expertise and are challenging to compose. Further, they are trained solely, therefore, 

errors from every component may mix. The difficulty of futuristic TTS architects hence guides to 

considerable engineering achievements when creating a novel framework. 

 

Hence, there are several benefits of an integrated end-to-end TTS platform that can be trained on <text, 

audio> pairs through lower human interaction. Initially, such a system reduces the necessity for active 

attribute engineering, that may include heuristics and brittle design options. Next, it smoothly permits 

for wealthy conditioning on several characteristics, for instance, language or high-level attributes such 

as emotion. This is due to the conditioning that can perform at the very start of the framework instead 

of solely on various elements. Equivalently, alteration to recent information might also be effortless. 

Ultimately, a unique framework is probably to be stronger rather than a multi-stage platform where 

each element’s mistake can compound. These benefits mean that an end-to-end framework could help 

to train on great amounts of developed, expressive but frequently noisy data initiated in the real world. 

 

 

Figure 3 Model design. The framework takes attributes as input and outputs the matching raw 
spectrogram, which is further fed to the Griffin-Lim rebuilding algorithm to synthesize speech. 
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As far as we know, the earliest work that includes end-to-end TTS is through implementing seq2seq with 

attention. However, it needs a pre-trained hidden Markov model (HMM) aligner to assist the seq2seq 

model to learn the alignment. Besides, a few techniques are implemented to get the model trained, 

which the author’s note hurts prosody. Plus, it forecasts vocoder dimensions and thus, needs a vocoder. 

In addition, the model is trained on phoneme inputs and the experimental outcomes appear to be 

limited. 

 

2.7 Attention Layer 

 
The fundamental element of complex recurrent or convolutional neural networks, that involve an 

encoder and a decoder, is the vital sequence transduction frameworks. The significant performing 

representations also relate to the encoder and decoder via an attention structure.  

 

Recurrent frameworks usually lead to computation between the symbol positions of the input and 

output series. Associating the positions to strides in the computation period, they provide a series of 

unrevealed states h(t), as a representation of the past hidden state h(t-1) and the input for position t. 

This essentially sequential nature prevents correlation within training examples, that turns into crucial at 

longer sequence lengths, as memory restraints limit clustering between examples. Novel work has 

accomplished important developments in computational effectiveness via factorization tricks and 

conditional computation, by further enhancing framework performance in the case of the latter. 

Nevertheless, the primary restriction of sequential computation exists. 

 

Self-attention, often named intra-attention represents an attention mechanism linked to various 

positions of a unique sequence to compute a representation of the sequence. Self-attention has been 

implemented successfully in different tasks encompassing reading comprehension, abstractive 

summarization, textual entailment, and learning task-independent sentence representations. The 

recurrent attention mechanism is fundamental to an end-to-end memory network instead of sequence-

aligned relapse and has been displayed to perform well on simple-language question answering and 

language modeling tasks. 
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3 METHODOLOGY 
In this chapter we will show the methodology used to achieve the implementation of Arabic 

language in addition to ESPnet. 

  

Figure 4 shows an overview of the project stages. To achieve the goal of adding a new language to 

ESPnet, first we should have the data through a dataset previously created. The next step is to 

process this dataset to be compatible with RNN for training. After preprocessing the metadata is 

extracted from the dataset. This metadata is fed for training in the next step. This training will result 

with a model used for TTS process. Finally, the model is integrated with a GUI to be used easily by 

unprofessional users. The GUI can also be integrated with pretrained models. 

  

 

Figure 4 A schematic for the project 

 

A pretrained model downloaded from the internet is used to test the software. A demo server that 

contains the GUI is used to interface with the user, as shown in figure 5. 
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Figure 5 GUI used to synthesize the written text to speech 

To activate the server, the command “python demo_server.py--checkpoint 

.\{folder_in_a_destination_of_your_choice}\model.ckpt-200000” must be issued from Anaconda first, 

and then a browser is opened and the local host with port 9200 is browsed to connect to the local server 

through “localhost:9200”. A virtual environment should be used for the system to work properly. 

 

To create a virtual environment, we use Anaconda. Anaconda is a type of prompt that is similar to the 

classical computer command prompter (the cmd), as shown in figure 6. 

 

 

Figure 6 Anaconda prompt base virtual environment 

The creation of a new environment is simple through the command “conda create -n 

{environment_name} python=3.5”, as shown in figure 7. Python version 3.5 is chosen for its 

compatibility with the needed Tensorflow library for the project. Finally, the environment is ready to be 

activated using the command “activate {environment_name}”, as shown in figure 8.  

 

 

Figure 7 Creating a virtual environment in Anaconda 
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Figure 8 Anaconda virtual environment activated 

 

To have a fully functional system, some python libraries, including TensorFlow, should be 

downloaded. To download the needed libraries all at once, all libraries should be written to a text 

file (requirements.txt in our case) and the command “pip install -r requirements.txt” is then issued, 

as shown in figure 9.  

 

 

Figure 9 Python libraries installation in Anaconda 

 

3.2 Steps to add a new language to the ESPnet TTS process. 

 

3.2.1 Data preparation 

A dataset was created for later training according to the needed language, Arabic. A Preprocessor is 

used to create a new dataset. A Preprocessor is a code that is responsible for generating an already 

spoken text, a mel-scale spectrogram of the audio, and a linear-scale spectrogram of the audio. These 

three components compose a dataset that is used for training. 

For each training example, a preprocessor should: 

i. Load the audio file. 

ii. Compute linear-scale and mel-scale spectrograms (float32 numpy arrays). 

iii. Save the spectrograms to disk. Note that the transpose of the matrix returned by 

`audio. Spectrogram` is saved so that it's in time-major format. 

iv. Generate a tuple “(spectrogram filename, mel spectrogram filename, n_frames, 

text)” to write to train.txt. n_frames is just the length of the time axis of the 

spectrogram. 
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Figure 0.10 Example of a Preprocessor function 

 

3.2.2 Wav dump / Embedding preparation. 

Wave files should be prepared to be used during training process. The Arabic corpus from Dr. Nawar AL 

HALABI Ph.D. is used. “librosa” is used by the Preprocessor to load wav files from our dataset to numpy 

array so mel-scale spectrogram can be computed and written to the disk.  

 

After setting-up the Preprocessor and the needed files, the preprocessing can start using the command 

“python.\preprocess.py --dataset {dataset}”. 

  

 

Figure 0.11 The Arabic corpus used for training. 
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3.2.3 TTS training 

In this stage the RNN training of the ESPnet to understand Arabic language. By training the RNN the 

weights of the connections between each layer of the network are manipulated to have the lowest error 

between the actual and expected result. 

The training starts after issuing the command “python.\train.py”. In this command we are running the 

train.py python code to train the RNN. Multiple attributes can be changed from default thanks to 

“argparse” library. The user can specify the working directory through “-base-dir” argument. Also, the 

user can specify training file directory through “--input” arguments. The model used can be specified 

through “--model”. The running name that is used for logging using “-name” argument. This name is 

used to differentiate between different models used in the logs. Hyperparameters can be modulated 

using the “--hparams”. These hyperparameter overrides as a comma-separated list of name=value pairs. 

To set the global step to restore from checkpoint the user can add the argument “--restore_step”.  

Additionally, the steps between running summary operations can be set by the argument “--

summary_interval”, and the steps between writing checkpoints are set “--checkpoint_interval”. The user 

can use the help of webhook to have periodic reports about what’s happening in the background. To the 

Unified Resource Link (URL) for webhook “--slack_url” argument is used. The user can also specify the 

level of TensorFlow logs. This level means the amount of information that TensorFlow will prompt on 

the screen while training, and it can be set using the argument “--tf_log_level”. 

 

 

Figure 0.12 RNN training function 
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Figure 3.11 shows the architecture of the NN used in ESPnet. The network's first layer is a non-

trainable layer whose function is only to take raw wave data as input and convert it to a mel-

spectrogram. This spectrogram will be fed to an extraction layer to extract its features. This layer 

is made up of two consecutive 2D Convolutional layers (Conv2D). Conv2D itself is made up of 

three layer types as follows: input, convolutional, and pooling layers (Agiomyrgiannakis 2015). 

CNN is mainly used for image classification [79], but by adding the attention mechanism the 

limitations of using CNN in text classification can be addressed [80]. An attention function is made 

up of 4 vectors: a query, a kyes vector, a values vector, and an output. It’s a function where the 

mapping of the query and a set of key-value pairs to the output occurs. The output is computed 

as a weighted sum of the values, where the weight assigned to each value is computed by a 

compatibility function of the query with the corresponding key After features extraction (Ruzsics 

& Samardžić 2019). 

The resulting data from the Conv2D layer then goes to a Long-term Dependency layer. This layer 

gives the NN the ability to memorize for an interval of time. This memory increases the efficiency 

of the NN. The resulting data from this layer continues to an Attention layer that uses the Softmax 

activation function. Softmax is efficient when dealing with multidimensional spaces and multi-

hidden layers. It restricts the probability between 0 and 1 only (H. Zhang et al. 2019). Finally, the 

data goes to the Classification layer. In this layer the classification for the voice signal from the 

raw wav file takes place to know what the letters is spoken. 
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Figure 0.13 ESPnet RNN architecture 

 

3.2.4 TTS synthesizing 

Figure 10 shows an overview of the process of speech synthesis. The process starts with text 

normalization. Its job is to resolve issues such as numbers, abbreviations, and currency symbols.  

Normalizing a text means to convert it to its standard form. 

The second step is Phonetization. It is made up of two stages. The first stage is converting input text into 

phonemes. The second stage is converting the phonemes into phones. This means converting each letter 

to its sound (Letter-To-Sound LTS). 

 

Figure 0.14 Overview of process of speech synthesis 
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3.2.5 Link to the server 

The GUI (figure 5) used is a demo server with a text field to write the sentence needed to be synthesized 

and a Push button to start the algorithm for synthetization. The code based on HTML is used to connect 

the core algorithms of the ESPnet to the GUI server. 

 

Figure 0.15 HTML-based server function 
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Figure 0.16 Code to connect to the GUI server. 

3.3   IMPORTANT LIBRARIES TO INSTALL 

Arabic_pronounce library (Figure 3.15) is one of the important libraries that are needed to be 

downloaded for the system to work properly. This library is used to phonetize the Arabic words, 

as shown in Figure 3.16. According to Dr. Nawar, the library developer, official github, the library 

converts Arabic diacritice text to a sequence of phonemes and create a pronunciation dictionary 

from them for alignment. 
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3.4 SYSTEM LAUNCH 

To launch the system, the command “python entry-point.py --checkpoint 

.\tm\model.chkpt-200000” should be issued in the virtual environment. The command is made 

up of four parts. First the “python” specifies the programming language of code to be launched. 

The “entry-point.py” argument is the name of the main python file to be launched. This file will 

run other branch files according to its need. The third argument specifies the option that we want 

to start from a checkpoint. This checkpoint is created after a specific number of iterations of 

training occurred. The number of iterations can be known from the name of the checkpoint itself. 

The   argument “.\tm\model.chkpt-200000” shows the directory of the checkpoint file. At the 

end of the checkpoint, we can read the number of iterations on this point, which is 200000 

iterations. 

4. FINDINGS 

The demographic characteristics of the respondents are presented in Table 4.1. Thirty-six (52.9%) of the 

participants are males whereas there were 32 (47.1%) females. Most respondents (33.8%) are between 

26 and 35 years old, 18% of the respondents are between 36 and 45 years of age, and 16 % are between 

46 and 55 years. Most respondents (48.5%) have a bachelor’s degree, while 23.1% have a master’s 

degree and 14.7% have a Ph.D. degree. The results also indicated that 43 (89.7%) have Arabic as their 

native language. 

The findings of the measurement model are presented in Table 4.2. To examine the internal consistency 

of each variable, the Cronbach alpha was evaluated, thus confirming the reliability of the measurement 

items. The reliability of the constructs assessing the quality and acceptance of the TTS and the human 

voice is 0.79 and 0.7, respectively as illustrated in Table 4.2, thus confirming internal consistency. The 

findings demonstrate the internal consistency of the 9-item scale. 

To assess validity in this study, all item loadings (λ), and correlations of the scale on the overall quality 

and acceptance of the TTS and human voice are assessed and presented in Table 4.2. To confirm 

convergent validity, all item loadings (λ) are more than the threshold of 0.6 (Fornell & Larcker, 1981). 

The nine-item scale demonstrates a high correlation with acceptance (0.55, p< 0.01) and overall quality 
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(0.65, p< 0.01) for the TTS and a high correlation with the single item on acceptance (0.65, p< 0.01) and 

overall quality (0.81, p< 0.01) for the human voice as shown in Table 4.2 

 

Table 4.1 Respondents’ demographic profile (N= 68) 

Demographic information Frequency Percentage 

Gender   

Male 36 52.9% 

Female 32 47.1% 

Age   

Under 16 1 1.5% 

16- 25 7 10.3% 

26 - 35 23 33.8% 

36 - 45 18 26.5% 

46 -55 16 23.5% 

Above 56 3 4.4% 

Educational status   

Bachelor’s degree 33 48.5% 

High school 6 8.8% 

Master’s degree 15 23.1% 

Ph.D. degree 10 14.7% 

Vocational degree 4 5.9% 

Mother language   

Arabic language 61 89.7% 

English language 1 1.5% 

Another language 6 8.8% 
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Table 4.1 Measurement Model 

 Assessing TTS Quality        Assessing Human voice 

Items Loading
s (λ) 

Mea
n 

Standar
d 

deviatio
n 

Item to 
total 

correlat
ion 

Loading
s (λ) 

Mea
n 

Standar
d 

deviatio
n 

Item to total 
correlation 

Listening 
effort 

0.742 2.94 1.423 0.75 0.833 2.18 0.961 0.78 

Pronunciati
on 

0.612 2.84 1.410 0.61 0.651 1.74 1.277 0.69 

Speaking 
rate 

0.602 3.28 1.144 0.79 0.845 2.06 0.751 0.88 

Pleasantnes
s 

0.720 4.41 2.307 0.69 0.728 2.01 1.311 0.76 

naturalness 0.744 3.62 1.305 0.81 0.731 2.34 1.462 0.69 

Audio flow 0.658 2.29 1.210 0.90 0.746 1.44 0.999 0.82 

Ease of 
listening 

0.615 3.40 2.317 0.73 0.713 1.46 0.961 0.68 

Comprehen
sion 

problems 

0.607 3.25 1.309 0.65 0.602 1.65 0.967 0.77 

Articulation 0.615 2.41 1.175 0.78 0.727 2.11 1.152 0.79 

The results presented in the tables below were generated using SPSS program and were 

interpreted utilizing descriptive statistical methods such as the frequency, percent, valid percent, and 

cumulative percent. Frequency represents the number of occurrences of each response chosen by the 

participants. Furthermore, the percent is a relative value indicating hundredth parts of any response. 

Moreover, the valid percent refers to the percentage after excluding missing cases. It is essential to 

highlight that the percent and valid percent values were identical since there are no missing values. Over 

and above, the cumulative percent represents the percentage of the cumulative frequency within each 

interval. 

The overall quality and acceptance of the TTS audio were compared to that of the human voice in Tables 

4.3 and 4.4, respectively. As presented in Table 4.3, 48.6% of the respondents reported that the overall 

quality of the TTS voice is either poor or very poor; however, 14.7% reported that the quality of the TTS 
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is excellent. On the other hand, approximately 65% and 24% of the respondents claimed that the 

overall quality of the human voice was excellent and good respectively; meanwhile, approximately 6% 

reported that the quality of the human voice is very poor. 

Table 4.2   Quality rating for TTS vs human voice  

(Quality of the TTS) 

Item Scale Frequency Percent Valid Percent Cumulative 
Percent 

Excellent 

 Fair 

Good 

 Poor 

Very Poor 

Total 

10 

13 

12 

18 

15 

68 

14.7 

19.1 

17.6 

26.5 

22.1 

100.0 

14.7 

19.1 

17.6 

26.5 

22.1 

100.0 

14.7 

33.8 

51.5 

77.9 

100.0 

(Quality of the human voice) 

Item Scale Frequency Percent Valid Percent Cumulative 
Percent 

Valid Excellent  

Fair 

Good  

Poor 

Very Poor 

Total 

44 

1 

16 

3 

4 

68 

64.7 

1.5 

23.5 

4.4 

5.9 

100.0 

64.7 

1.5 

23.5 

4.4 

5.9 

100.0 

64.7 

66.2 

89.7 

94.1 

100.0 

 

Concerning the acceptance of audios, respondents determined if the audios could be utilized for 

interactive telephone or wireless service systems and their responses are shown in Table 4.4. 

Specifically, approximately 62% of the respondents reported negative responses concerning the TTS 

audio. Meanwhile, 88.2% of the respondents agreed to utilize the human voice for information service 

systems. 
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Table 4.3 Acceptance of audio (TTS audio versus human audio) 

(Acceptance of the TTS) 

Item scale Frequency Percent Valid Percent Cumulative 
Percent 

No 42 61.8 61.8 61.8 

Yes 26 38.2 38.2 100.0 

Total 68 100.0 100.0  

(Acceptance of the human voice) 

Item scale Frequency Percent Valid Percent Cumulative 
Percent 

No 8 11.8 11.8 11.8 

Yes 60 88.2 88.2 100.0 

Total 68 100.0 100.0  

 

As presented in Table 4.5, approximately, 30% of the respondents claimed that moderate effort is 

required to understand the message in the TTS audio. Furthermore, 25% of the participants argued that 

attention is necessary however no appreciable effort is required to understand the TTS message. On the 

other hand, approximately 65% of the respondents reported that no effort is required with complete 

relaxation to understand the human voice message. 
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Table 4.4 Listening effort (TTS audio versus human voice) 

 (Concerning the TTS audio) 

Item scale  

Frequenc
y 

 

Percen
t 

Valid 

Percen
t 

Cumulativ
e 

Percent 

Attention necessary; no appreciable 
effort 

    

required 17 25.0 25.0 25.0 

Complete relaxation possible; no 
effort required 

9 13.2 13.2 38.2 

Considerable effort required 13 19.1 19.1 57.4 

Moderate effort required 19 27.9 27.9 85.3 

No meaning understood with any 
feasible effort 

10 14.7 14.7 100.0 

Total 68 100.
0 

100.0  

 (Concerning the human voice audio) 

Item scale Frequenc
y 

Percen
t 

Valid 
Percen

t 

Cumulativ
e Percent 

Attention necessary; no appreciable 
effort 

    

required 12 17.6 17.6 17.6 

Complete relaxation possible; no effort 
required 

44 64.7 64.7 82.4 

Considerable effort required 2 2.9 2.9 85.3 

Moderate effort required 8 11.8 11.8 97.1 

No meaning understood with any 
feasible effort 

2 2.9 2.9 100.0 

Total 68 100.
0 

100.0  

Table 4.6 demonstrates the responses regarding anomalies in pronunciation. Twenty-nine percent of the 

respondents noticed slightly annoying anomalies in pronunciation while listening to the TTS audio; 

however, 16.2% of the respondents noticed annoying anomalies in pronunciation. 
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On the other hand, 72.1% percent of the respondents did not notice anomalies in pronunciation while 

they were listening to the human voice. 

 

Table 4.5 Pronunciation (TTS audio versus human voice) 

(Regarding the TTS audio) 

Item scale Frequency Percent Valid Percent Cumulative 
Percent 

No 18 26.5 26.5 26.5 

Yes, annoying 11 16.2 16.2 42.6 

Yes, but not annoying 11 16.2 16.2 58.8 

Yes, slightly annoying 20 29.4 29.4 88.2 

Yes, very annoying 8 11.8 11.8 100.0 

Total 68 100.0 100.0  

(Regarding the human voice) 

Item scale Frequenc
y 

Percent Valid 
Percent 

Cumulative 
Percent 

No 49 72.1 72.1 72.1 

Yes, annoying 2 2.9 2.9 75.0 

Yes, but not 
annoying 

6 8.8 8.8 83.8 

Yes, slightly annoying 8 11.8 11.8 95.6 

Yes, very annoying 3 4.4 4.4 100.0 

Total 68 100.0 100.0  

Over and above, respondents have evaluated the average speed of delivery while listening to the TTS 

audio and human voice. For instance, 29.4% of the respondents claimed that the average speed of delivery 

was just right while listening to the TTS audio; whereas, approximately 28% stated that the average rate 

of delivery was slightly fast or slightly slow as shown in Table 4.7. 

On the other hand, approximately 62% of the respondents reported that the average speed of 

delivery was just right while they listened to the human voice, while 19.1% claimed that the average speed 

was very fast or very slow. 
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Table 4.6 Speaking rate (TTS audio versus human voice) 

The average speed of delivery was: (For the TTS) 

Item scale Frequency Percent Valid 
Percent 

Cumulative 
Percent 

Extremely Fast or Extremely 
Slow 

4 5.9 5.9 5.9 

Fairly Fast or Fairly Slow 14 20.6 20.6 26.5 

Just Right 20 29.4 29.4 55.9 

Slightly Fast or Slightly Slow 19 27.9 27.9 83.8 

Very Fast or Very Slow 11 16.2 16.2 100.0 

Total 68 100.0 100.0  

The average speed of delivery was: (For the human voice) 

Item scale Frequency Percen
t 

Valid 
Percent 

Cumulative 
Percent 

Extremely Fast or Extremely 
Slow 

2 2.9 2.9 2.9 

Fairly Fast or Fairly Slow 9 13.2 13.2 16.2 

Just Right 42 61.8 61.8 77.9 

Slightly Fast or Slightly Slow 13 19.1 19.1 97.1 

Very Fast or Very Slow 2 2.9 2.9 100.0 

Total 68 100.0 100.0  

Concerning pleasantness, the results presented in Table 4.8 revealed that 33.8% of the respondents 

claimed that the TTS audio was unpleasant. However, 42.6% of the respondents claimed that the human 

audio was very pleasant and approximately 28% argued that it is pleasant. 
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Table 4.7 Pleasantness (TTS audio versus human voice) 

 (Regarding the TTS audio) 

Item scale Frequency Percent Valid Percent Cumulative Percent 

Neutral 25 36.8 36.8 36.8 

Pleasant 8 11.8 11.8 48.5 

Unpleasant 23 33.8 33.8 82.4 

Very Pleasant 6 8.8 8.8 91.2 

Very 
Unpleasant 

6 8.8 8.8 100.0 

Total 68 100.0 100.0  

 (Regarding the human voice) 

Item scale Frequency Percent Valid Percent Cumulative 
Percent 

Neutral 16 23.5 23.5 23.5 

Pleasant 19 27.9 27.9 51.5 

Unpleasant 2 2.9 2.9 54.4 

Very Pleasant 29 42.6 42.6 97.1 

Very 
Unpleasant 

2 2.9 2.9 100.0 

Total 68 100.0 100.0  

 

As presented in Table 4.9, 32.4% of the respondents reported that the TTS audio was unnatural and 

approximately 12% reported that it was very unnatural. On the other hand, 35.5% of the respondents 

claimed that the human voice audio was very natural and 50% claimed that it was natural. 
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Table 4.8 Naturalness (TTS audio versus human voice) 

(Concerning the TTS audio) 

Item scale Frequency Percent Valid Percent Cumulative 
Percent 

Natural 18 26.5 26.5 26.5 

Neutral 13 19.1 19.1 45.6 

Unnatural 22 32.4 32.4 77.9 

Very Natural 7 10.3 10.3 88.2 

Very 
Unnatural 

8 11.8 11.8 100.0 

Total 68 100.0 100.0  

(Concerning the human voice) 

Item scale Frequency Percent Valid Percent Cumulative 
Percent 

Natural 34 50.0 50.0 50.0 

Neutral 5 7.4 7.4 57.4 

Unnatural 3 4.4 4.4 61.8 

Very Natural 24 35.3 35.3 97.1 

Very 
Unnatural 

2 2.9 2.9 100.0 

Total 68 100.0 100.0  

 

Based on the results presented in Table 4.10, 35.3 % of the participants reported that the flow of the TTS 

audio was either discontinuous or very discontinuous. Meanwhile, approximately 81% of the participants 

reported that the human voice audio was either smooth or very smooth. 
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Table 4.9 Audio flow (TTS audio versus human voice) 

(Concerning the TTS audio) 

Item scale Frequency Percent Valid Percent Cumulative 
Percent 

Discontinuous 20 29.4 29.4 29.4 

Neutral 24 35.3 35.3 64.7 

Smooth 14 20.6 20.6 85.3 

Very 
Discontinuous 

4 5.9 5.9 91.2 

Very Smooth 6 8.8 8.8 100.0 

Total 68 100.0 100.0  

(Concerning the human voice) 

Item scale Frequency Percent Valid Percent Cumulative 
Percent 

Discontinuous 3 4.4 4.4 4.4 

Neutral 8 11.8 11.8 16.2 

Smooth 34 50.0 50.0 66.2 

Very 
Discontinuous 

2 2.9 2.9 69.1 

Very Smooth 21 30.9 30.9 100.0 

Total 68 100.0 100.0  

The results presented in Table 4.11 revealed that 33.8% of the participants claimed that it was difficult to 

listen to the TTS audio for long periods and 13.2 % claimed that it was very difficult. On the other hand, 

approximately 47% and 31% of the respondents claimed that it was either very easy or easy to listen to 

the human voice for a long period. 
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Table 4.10 Ease of listening (TSS audio versus human voice) 

(Concerning the TTS audio) 

Item scale Frequency Percent Valid Percent Cumulative 
Percent 

Difficult 23 33.8 33.8 33.8 

Easy 16 23.5 23.5 57.4 

Neutral 14 20.6 20.6 77.9 

Very 
Difficult 

9 13.2 13.2 91.2 

Very Easy 6 8.8 8.8 100.0 

Total 68 100.0 100.0  

(Concerning the human voice) 

Item scale Frequency Percent Valid 
Percent 

Cumulative 
Percent 

Difficult 7 10.3 10.3 10.3 

Easy 21 30.9 30.9 41.2 

Neutral 6 8.8 8.8 50.0 

Very Difficult 2 2.9 2.9 52.9 

Very Easy 32 47.1 47.1 100.0 

Total 68 100.0 100.0  

 

Table 4.12 shows that 51.5 % of the respondents find, often and occasionally, certain words that were 

hard to be understood while listening to the TTS audio. However, 76.4% of the respondents never or 

rarely find hard words when they listened to the human voice. 
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Table 4.11 Comprehension problems (TTS audio versus human voice) 

(In the TTS audio) 

Item scale Frequency Percent Valid 
Percent 

Cumulative 
Percent 

All the time 9 13.2 13.2 13.2 

Never 10 14.7 14.7 27.9 

Occasionally 18 26.5 26.5 54.4 

Often 17 25.0 25.0 79.4 

Rarely 14 20.6 20.6 100.0 

Total 68 100.0 100.0  

(In the human voice) 

Item scale Frequency Percent Valid Percent Cumulative 
Percent 

All the time 3 4.4 4.4 4.4 

Never 43 63.2 63.2 67.6 

Occasionally 6 8.8 8.8 76.5 

Often 7 10.3 10.3 86.8 

Rarely 9 13.2 13.2 100.0 

Total 68 100.0 100.0  

Concerning the articulation, Table 4.13 revealed that approximately 40% of the respondents 

reported that the TTS audio was less clear and 13.2 % reported that it was much less clear. Meanwhile, 

47.1% of the respondents found the human voice very clear and approximately 30% indicated that it was 

clear. 
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Table 4.12 Articulation (TTS versus human voice) 

Were the sounds in the TTS audio distinguishable? 

Item scale Frequency Percent Valid Percent Cumulative 
Percent 

Clear 16 23.5 23.5 23.5 

Less Clear 27 39.7 39.7 63.2 

Much Less 
Clear 

9 13.2 13.2 76.5 

Neutral 13 19.1 19.1 95.6 

Very Clear 3 4.4 4.4 100.0 

Total 68 100.0 100.0  

Were the sounds in the human voice audio distinguishable? 

Item scale Frequency Percent Valid Percent Cumulative 
Percent 

Clear 19 27.9 27.9 27.9 

Less Clear 6 8.8 8.8 36.8 

Much Less Clear 2 2.9 2.9 39.7 

Neutral 9 13.2 13.2 52.9 

Very Clear 32 47.1 47.1 100.0 

Total 68 100.0 100.0  

 

4.3 DISCUSSION 

Relying on the data analysis presented in Section 4.2.1, the findings revealed that the human voice overall 

quality is better than that of the TTS voice. Over and above, the results indicated that the human voice is 

better utilized for interactive telephone or wireless systems in comparison to the TTS audio. Moreover, 

the human audio seemed to exhibit better results than the TTS audio concerning all measurement 

items.  

As mentioned earlier, end-to-end speech processing toolkit was utilized primarily in speech processing 

sections through open-source applications that encourage both TTS and ASR (Kwon et al. 2019; Tran 

2020). Furthermore, in the new open-source End-to-end speech processing toolkit, the ESPnet, intends to 
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offer an endless neural end-to-end system for speech proceeding. However, the Arabic language, unlike 

other languages, is still not supported the way it should be in today’s technology and application. There 

are a few applications which support TTS for Arabic language. The problem is that these applications are 

not easily extendable. To be able to add a new language such as Arabic, the API or used platform must be 

dynamically trained. ESPnet is one of the platforms that use Deep Learning (DL) for TTS and various other 

applications. This makes it easier to add the Arabic language to ESPnet, thus to the applications that use 

it for TTS. 

Based on the papers’ findings ,22.6% respondents stated that the quality of the TTS that they heard is 

poor, however, 14.7% and 17.6% participants claimed that the TTS was excellent and good, respectively. 

Moreover, although 61.8% of the respondents claimed that this TTS voice could not be used for an 

interactive service system, 38.2 % of the participants accepted the implementation of such TTS voice. Such 

findings revealed that the TTS voice overall quality and acceptance range would be perceived either good 

or excellent by a portion of the sample being targeted. This finding could be related to the fact that the 

Arabic language accent would differ between different Arabic countries. Accordingly, this report would 

suggest further implications to advance the overall quality and acceptance of TTS audio by utilizing the 

formal and standard Arabic language. 

5. CONCLUSION 

This chapter represents the methodology being adopted to compare a sample of synthetic speech (the 

Arabic TTS ESPnet) with a natural speech sample via the mean opinion scale (MOS) (Viswanathan & 

Visvanathan 2004). T he data collection process was done utilizing a web-based survey on the Google 

Form platform. The survey was divided into four sections as follows: a section which introduces the 

purpose of the study and encouraged the voluntary participation of respondents, a section including 

questions related to the respondents’ profiles, a section containing measurement items that assess the 

text-to-speech quality in the Arabic language, and a section assessing the quality of the human voice, also, 

in the Arabic language. The survey was distributed to respondents via WhatsApp application. The Google 

Form link was sent to participants aged between 15 and 60 years old. Moreover, data was collected from 

participants whose mother language is Arabic or who can understand the Arabic language. Each 

respondent listened to a synthesized sentence from the system in Section 3 and a natural speech sample 

in Section 4 and was guided to fill out the questionnaire. Collected data were analyzed via SPSS. The 
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number of respondents who participated in the study was 68. The findings revealed that the human voice 

over quality is better than that of the TTS voice and that the human voice is better in interactive service 

systems in comparison to the TTS audio. Meanwhile, the results indicated that, as well, the TTS voice 

overall quality and acceptance range would be perceived either good or excellent by a portion of the 

sample being targeted. Finally, this report would suggest further implications to advance the overall 

quality and acceptance of TTS audio by utilizing the formal and standard Arabic language. 
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