
PTA-FTSM-2025-A191511

SECURE CONFIDENTIAL FILE STORAGE USING

ENCRYPTED SLICES ON MULTI-CLOUD

XU QIAN，Elankovan A. Sundararajan

Faculty of Information Science & Technology

Universiti Kebangsaan Malaysia

43600 Bangi, Selangor

Abstract

This research introduces SecureSlice, a new-generation solution addressing the paramount

issue of secure cloud file storage. The OneSpace portion SecureSlice, is a more complete

piece which stand out from other storage apps in that it utilizes strong encryption and

advanced file slicing to store data spread across three primary consumer cloud platforms —

Google Drive (GDrive), Dropbox, Box.

At the heart of SecureSlice is this concept — we protect your data in multiple layers. The

content is turned into illegible files through heavy encryption before uploaded on any file

sharing services. Then the encrypted file is split into several independent fragments. Without

the decoding key, all three portions independently are useless, which also further mitigates

against any threat of data leak. That way no one cloud service has all the pieces to rebuild the

original file, and each of those sections are directly uploaded into user accounts on Google

Drive, Dropbox and Box respectively.

Even if one of the cloud platforms is compromised, this only exposes a tiny encrypted block

to an attacker that would be hopelessly impossible for them to read or perform any actions on.

The file can only be recovered, reconstituted and decrypted by the original owner – on one

side of this Selective Disclosure between CipherText Cloud/File Splitting system who has a

decryption key that unlocks all three different clouds containing fragments. This storage

system on a global scale is almost free of single point failures, and has improved the security

Cop
yri

gh
t@

FTSM

UKM

PTA-FTSM-2025-A191511

requirements at all levels far beyond simple data protection.Entity users which may be

achieved.

However, SecureSlice is also user-centric by design. Files are owned and controlled entirely

by users — you can seamlessly upload, manage or fetch sensitive documents without having

to depend on any central service. The straightforward interface of the app makes authorization

and file management easy to do, so that users no longer need knowledge about enterprise

security.

SecureSlice combines encryption, segmentation and multi-cloud distribution to not only

protect sensitive information from unauthorized access but ensure users can easily and

securely store, share or publish their files anytime anywhere. This infrastructure defines a new

standard for secure cloud storage as citizens of the digital world can experience security

without sacrificing their rights to privacy and personal control.

1.0 INTRODUCTION

Cloud storage solutions have gained so much popularity as cloud computing technologies are

being adopted rapidly by both individuals and organizations who find it very easy to store

their data and access them in a quick span of time. Cloud platforms providing a flexible,

scalable and easily accessible way to store data have transformed the landscape of storing &

sharing data. That said, as this dependence on external cloud solutions has increased

dramatically over the past decade it has equally introduced a slew of novel security threats

chief among which are fears around unauthorized access to people's data and likely privacy

violations more generally through such services·(Subashini & Kavitha, 2011).

The project was created in response to the pressing questions outlined above, for a new and

innovative application whose purpose is at its core reimagining how files are stored

into/deleted/loaded- out of cloud based services sorting activities. Their solution makes sure

that the user files are protected by strong encryption, — making it impossible to understand

them if you do not know how t decrypt their content(Ali, Khan & Vasilakos, 2015). Rather

Cop
yri

gh
t@

FTSM

UKM

PTA-FTSM-2025-A191511

than uploading these single encrypted files, the system divides every file into numerous

isolated fragments. After that, which means each encrypted fragment will mean nothing in

and of itself; these are replicated among various independent cloud services a few big-name

examples include Google Drive, Dropbox & Box(Kamara & Lauter, 2010).

This way, your data does not leak or someone access it and you are cool with in some risk

that is reduced significantly. Even if one cloud provider is breached, a hacker could only

access an encrypted fragment of the files and not reconstruct them into anything meaningful.

They can only successfully pull back, bring together and unscramble the entire document with

the proper client who has all cloud storage locations including all decryption keys. This kind

of distribution in encrypted fragments makes the system much more secure and robust since it

combines data confidentiality, integrity as well as user control to achieve a new level of cloud

storage security(Kshetri, 2013).

2.0 LITERATURE REVIEW

Cloud Storage Security: Cloud storage services provide almost infinitely scalable and

on-demand access to files but are also quite convenient for people—users can easily store

data, getting vast amount of disk space and forgetting about this worry. But all these

advantages, the price of which is attached via security in terms that include data leakage, loss

and unauthorized access. Numerous cloud data breaches have brought to light the inherent

risks of sensitive information being held on shared third-party platforms, particularly where

control over such data is given up by users into providing hands.

Encryption Methods: End-to-end encryption is one of the most effective strategies to secure

data in the cloud, ensuring that only authorized parties can access the contents of files.

Despite its strengths, implementing robust encryption poses challenges in key

management—users must securely store, share, and retrieve encryption keys, which is often

cited as a major barrier to adoption in both personal and enterprise environments. Poor key

management can result in permanent data loss or unauthorized disclosure.

Cop
yri

gh
t@

FTSM

UKM

PTA-FTSM-2025-A191511

File Fragmentation: Multiple studies have revealed data security can be further increased by

splitting files into numerous pieces and storing different parts separately. As long as files are

split over thirty storage locations the contents of a file will still be safe even if one location is

compromised. Yet, file fragmentation creates challenges at the technical level — issues like

proper restoring of fragments and synchronization between them efficiently across distributed

cloud environments. It is still a challenge in research to securely and reliably treat with such

fragmented data.

Multi-Cloud Storage: For instance, utilizing a multi-cloud storage strategy spreads files or file

fragments across multiple independent providers (ex: Google Drive ,Dropbox and Box) to

reduce the risk in dependence on any specific vendor. Should one provider be breached, only

some of the data is at risk as the structure ensures that your other platforms are still secure. On

the other hand, this approach adds complexity from a technical standpoint — with cross-cloud

integration unified authorization and coordinated data management. Multi-cloud done right

needs to solve for auth and sync at scale, mapped across multiple clouds user experience.

3.0 METHODOLOGY

3.1 User Needs

Amid exponential rise in sophisticated traps for cybersecurity and broader acceptance of the

cloud-based services, a demand at all levels ever had arisen to weekly established but

convenient approachings dedicated file storage. Nowadays users not only want their data to

stay confidential but also wish to access the files across multiple devices and places in a

seamless way, at any given hour.

Security Requirements:

 The system must, above all, be secure and transparent from the end-user perspective —

including ensuring that user files are always encrypted in transit as well. Before data is sent to

an external platform it must be encrypted on the user’s device so nobody (not even cloud

Cop
yri

gh
t@

FTSM

UKM

PTA-FTSM-2025-A191511

service providers) knows file content. Implementing strong encryption protocols to secure

against unauthorized access and data breaches requires competent key generation

mechanisms.

Fragmentation and Restoration:

For that, it is necessary to secure data fragmentation — dividing files into several parts before

storing them on the system - and then from this, ensure a good response when users want their

data retrieval. No one fragment ought to carry any context on its own, and only true

assembly/de-cryption will yield a file. This mitigates the impact if a single storage provider

suffers from a security breach.

Integration with Popular Cloud Platforms:

Given the dominance of major cloud storage providers such as Google Drive, Dropbox, and

Box, the system needs to provide straightforward integration with these platforms. This

includes support for industry-standard authentication (e.g., OAuth 2.0), efficient file transfer,

and reliable cross-platform synchronization. Users should be able to link their accounts

securely and manage their storage locations without technical barriers.

In conclusion, the main user requirements fulfillable by the future system are top-notch

security with end-to-end encryption and slicing feature, excellent syncing capabilities of

already widely-used cloud storage services (Amazon S3 in particular), as well good design

which will facilitate perception a lot.

3.2 Conceptual Model Design

Architecture

The proposed architecture is a design concept, which aims to provide the maximum

security of data together with flexibility in operation. The core workflow starts with

Cop
yri

gh
t@

FTSM

UKM

PTA-FTSM-2025-A191511

client-side file encryption; splits are then performed in two steps: finally, encrypted

fragments are uploaded to a collection of completely separate cloud (bucket) nodes. This

design of the workflow, in turn eliminates potential data exposure due to single-cloud

dependency, creating a strong defense-in-depth model for cloud storage security.

Encryption

All user files are locally encrypted with the Advanced Encryption Standard (AES),

specifically in Electronic Codebook (ECB) mode with PKCS5Padding, before any cloud

interaction. This cryptographic mechanism guarantees that the content of file becomes

totally gibberish for anybody who does not have appropriate decryption key. This is

entirely on the user's device and ensures that not even cloud service providers can decrypt

your stored data. This end-to-end encryption model improves the privacy and

confidentiality of data in motion, mirroring secure cloud application industry best

Cop
yri

gh
t@

FTSM

UKM

PTA-FTSM-2025-A191511

practices.

The core feature of the application is that it will first encrypt the user's file using a strong

encryption algorithm, ensuring that the data is unreadable to anyone without the decryption

key.

File Slicing

After encryption, each file undergoes a duplicitous slicing factor. In stage one, the file is

horizontally partitioned— split by rows —and we get a set of tentative fragments. The extra

subdivisions are seperated by columns from further subdividing each of these segments so

that we now have a grid made up of smaller 'chunks'. The ability to slice twice in this way

changes the game as each resultant fragment can be both a fraction and an encrypted piece of

data in the original file. No original files can be recovered unless the right key is used to

decrypt them, and only by exactly recombining all fragments! While giving added support

Cop
yri

gh
t@

FTSM

UKM

PTA-FTSM-2025-A191511

towards data security this method can also bring redundancy as well as storage management

flexibility.

We can first horizontally split the file which means each row will be considered as one of tje

fragments and then we vertically divide it by considering that number od frags per column so

eventually, you are using 1..doubleSlice only calculate a total no. of fragments dynamically

for given rowCount and colCount

Then defines how the file is splitted and calculates the total number of fragments as per given

rowCount, colCount.

Cop
yri

gh
t@

FTSM

UKM

PTA-FTSM-2025-A191511

The doubleSlice method defines the way the file is split and dynamically determines the total

number of fragments based on the given rowCount and colCount. However, the specific

number of fragments is determined at the place where doubleSlice is called (such as in

UploadActivity), according to the parameters passed in.

Cloud API Integration

The system is designed to easily integrate with the top cloud providers on the market today.

Official Software Development Kits (SDKs) are used for Google Drive and Dropbox

guaranteeing the functionality with their systems is stable, performant. They enable more

secure upload/download of files, as well account management, leveraging OAuth2-based

authentication flows for these features. If official SDK support for Box is limited or not ideal,

we can integrate by interacting directly with the Box REST API and making HTTP requests

(GET , POST etc.) using OkHttp library to send/receive data The modular nature of cloud

connectivity and its components mean the system can easily move forward to support

next-generation interfaces, as well as common regulatory considerations.

google Official Google

Drive SDK &

OAuth2

dropbx Official Google

Drive SDK &

OAuth2

box Box is accessed

directly via

REST APIcalls

using OkHttp.

Cop
yri

gh
t@

FTSM

UKM

PTA-FTSM-2025-A191511

4.0 RESULTS

Development Tools:

The application is developed using Android Studio as the primary IDE, with Kotlin as the

programming language. Integration with cloud services is achieved using the official Google

Drive SDK, Dropbox SDK, and direct interaction with the Box REST API.

 Core Modules:

The system architecture is composed of several key modules:

 Encryption/Decryption Module: Handles all AES encryption and decryption operations

for file security.

 Double Slicing Module: Implements the two-step slicing algorithm, splitting encrypted

files horizontally and then vertically.

 Cloud Upload/Download Module: Manages the transfer of file fragments between the

app and multiple cloud storage providers.

 Fragment Mapping Module: Keeps track of which fragments are stored on which

clouds.

 Key Management Module: Manages the generation, encoding, and secure handling of

AES encryption keys.

 Fragment Distribution:

Each six fragments per file Fragments 0 and 1 are in Google Drive, fragments 2 and 3 sit on

Dropbox while Fragments V box. The logic behind this distribution is provided by the claim

that no one cloud provider has enough data to rebuild the file. Cop
yri

gh
t@

FTSM

UKM

PTA-FTSM-2025-A191511

1)Distribute the 6 fragments evenly to 3 cloud drives in order, with each cloud drive getting 2

fragments.

2）Google gets fragments 0 and 1, Dropbox gets fragments 2 and 3, and

Box gets fragments 4 and 5.

Fragment Naming:

Fragments are systematically named based on their destination cloud and their index position

(e.g., gfrag_0.dat for Google Drive fragment 0), allowing for efficient retrieval and

management. Cop
yri

gh
t@

FTSM

UKM

PTA-FTSM-2025-A191511

Key Management:

The AES encryption key is encoded in Base64 format to facilitate secure storage, user

copying, and easy input during the file restoration process.

Cop
yri

gh
t@

FTSM

UKM

PTA-FTSM-2025-A191511

1)Encryption and Decryption Methods

• encrypt(input, key): Encrypts the input data using the provided key with AES,

and outputs the ciphertext.

• decrypt(encrypted, key): Uses the same key to decrypt the ciphertext and

restores the original file content.

2)Key Base64 Encoding/Decoding

• encodeKeyToBase64(key): Converts the binary key into a Base64 string so

that users can save it.

decodeKeyFromBase64(keyStr): Converts the user-input Base64 string key back into

a binary key for decryption.

4.1 Application Evaluation

i. Functional Testing

Cop
yri

gh
t@

FTSM

UKM

PTA-FTSM-2025-A191511

Using exhaustive functional tests, we show that the application consistently performs well for

all core functions within stestsuite mould: file encryption , double slicing, moving slice to

cloud , getting slices from cloud 'n', combining them and decrypting back final file. All stages

of the workflow were extensively prototyped with various types and sizes of input files to test

for robustness. Without the correct AES encryption key, no restore is possible and requires

unlocking before any data can be read. If a wrong key is passed, the application locks down

access inhibiting unauthorized viewing of files essentially protect user information!

 ii. Usability Testing

Startup and Welcome Screen

When the user opens the SecureSlice app, they are greeted with a clean welcome page. The

main section displays the app icon and name, with a prominent "Get Started" button below.

The user taps "Get Started" to proceed to the next step.

User Login/Registration

Cop
yri

gh
t@

FTSM

UKM

PTA-FTSM-2025-A191511

If the user already has an account, they can enter their email and password and tap "Login" to

sign in.

If the user is new, they can tap "Don’t have an account? Register" at the bottom to switch to

the registration page.The registration page asks the user to fill in their username, email, and

password. After completing the form and tapping "Register," registration is completed.

After successful registration, the system automatically returns to the login page and displays a

"Registered successfully" message. The user can now log in with their newly created account

.

Main Interface – Upload History

After logging in, the user enters the main "Upload History" page, where they can view the

record of files uploaded in the past (which is empty upon first use).

At the top of the page, there is an "Upload File" button that the user can tap to start uploading

a new file.

At the bottom of the page, there is a "Logout" button, allowing the user to log out at any time

Cop
yri

gh
t@

FTSM

UKM

PTA-FTSM-2025-A191511

.

Cloud Authorization Process

Before uploading files, the system will prompt the user to authorize Google Drive, Dropbox,

and Box cloud accounts individually.

When authorizing Google Drive, the system brings up the Google account selection screen,

where the user selects their Google account and grants permission.

When authorizing Dropbox, the app jumps to the Dropbox OAuth2 authorization page. The

user taps "allow" to grant SecureSlice access to their Dropbox files.

When authorizing Box, the user needs to enter their Box account and password, and then tap

"Authorization" to grant access.

Cop
yri

gh
t@

FTSM

UKM

PTA-FTSM-2025-A191511

During the authorization for all platforms, users do not need to provide their passwords to

SecureSlice; all sensitive information is entered only on the official authorization screens,

ensuring security.

File Upload

After authorization is complete, the user can tap "Upload File" to select a local file to encrypt

and upload.

The app will automatically perform file encryption and double slicing, then upload the six

resulting fragments to Google Drive, Dropbox, and Box, respectively.

After the upload is complete, the system will display an upload success message and generate

an AES key (Base64-encoded) for subsequent file restoration.

Cop
yri

gh
t@

FTSM

UKM

PTA-FTSM-2025-A191511

File Download and Restoration

Users can view all upload records on the main "Upload History" page.

To restore or download a file, the user taps the relevant record, and the system will prompt for

the AES key.

Only when the correct key is entered can the app automatically download the file fragments

from the respective clouds, merge and decrypt them, and restore the original file.

If the key is entered incorrectly, the file cannot be restored, ensuring data security.

Cop
yri

gh
t@

FTSM

UKM

PTA-FTSM-2025-A191511

5.0 CONCLUSION

This project provides secure and confidential file storage in multiple clouds based on

encryption, fragmentation along with distributed storage. SecureSlice also offers users access

to total control over their data, thereby drastically reducing possibilities for unauthorized use

and security breaches. The app is essentially a new solution not available in the market..

6.0 APPRECIATION

I would like to express my gratitude to my supervisor, Elankovan A. Sundararajan, for his

guidance and support throughout this project. I also thank my peers and family for their

encouragement.

7.0 REFERENCES

Subashini, S., & Kavitha, V. (2011). A survey on security issues in service delivery
models of cloud computing. Journal of Network and Computer Applications, 34(1),
1-11.

Cop
yri

gh
t@

FTSM

UKM

PTA-FTSM-2025-A191511

Ali, M., Khan, S. U., & Vasilakos, A. V. (2015). Security in cloud computing:
Opportunities and challenges. Information Sciences, 305, 357-383.

Kamara, S., & Lauter, K. (2010). Cryptographic cloud storage. In Financial
Cryptography and Data Security, 136-149.
Kshetri, N. (2013). Privacy and security issues in cloud computing: The role of
institutions and institutional evolution. Telecommunications Policy, 37(4-5), 372-386.

XU QIAN (A191511)

Dr. Elankovan A. Sundararajan

Faculty of Information Technology & Science

National University of Malaysia

 Cop
yri

gh
t@

FTSM

UKM

	1.0 INTRODUCTION
	2.0 LITERATURE REVIEW
	3.0 METHODOLOGY
	3.1 User Needs
	3.2 Conceptual Model Design

	4.0 RESULTS
	4.1 Application Evaluation

	5.0 CONCLUSION

