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ABSTRACT 
 
This technical report describes a visual odometry algorithm for on-road vehicles under planar motion 

assumption. The algorithm uses as only input images taken by a single omnidirectional camera mounted on a 

vehicle. To achieve accurate motion estimation results, we combine a set of the-state-art-of-the-art keypoint 

detectors for the rotation and translation estimation. In particular, we use a set of features of different detectors 

based ground plane tracker to estimate the translation to estimate the rotation. As we show, the combination of 

strongest keypoints detectors to estimate the vehicle heading outperforms the pure single feature based 

approach. This pose estimation method has been successfully applied to videos from an automotive platform. 

We give an example of camera trajectory estimated purely from omnidirectional images over a distance of 

several meters.  

Keywords: omnidirectional camera, visual odometry, vehicle ego-motion estimation, homography, SIFT 

features 

 

1.0 INTRODUCTION 

 

Autonomous visual robot navigation can be defined as the capability of a robot to plan an 

efficient path between two or more locations and execute that plan to reach the 

destination(s) on its own, based on visual sensors, without human intervention. A robot’s 

efficient path and safe travel are achieved by an accurate map which represents the real 

surrounding environment that includes the poses of locations that a robot travelled through. 

A pose is a combination of position and orientation of the visual sensor such as camera 

which represents the translational and rotational matrix between a corresponding sequence 

of image locations. 

In VSLAM system which is a major concern in this research, the location pose is computed 

by Visual Odometry (VO) which is somewhat similar to wheel odometry 

(Venkatachalapathy 2016; Nistér et al. 2004).  VO is a process of estimation of a camera 

pose and motion between a sequence of image locations where the Trajectory Estimation 

(TE) is a process which takes camera poses and endows them with time in- formation. TE 

estimates the path which a camera moves through over a certain period of time. There is a 

correlation between the VOTE and VSLAM, where VOTE focuses on constructing a 

consistent trajectory using a local map to obtain a highly accurate local trajectory, and 

VSLAM tackles global map consistency along the entire trajectory. 

In the literature, the pose estimation problem is known as Perspective-n-Point (PnP) which 

determines the pose of a camera based on the apparent position of n points (Gao et al. 2003). 

There are many methods proposed for VOTE based on a PnP problem such as RANSAC. 

RANSAC has been used to estimate the pose which is used for constructing the trajectory of 

a robot. The progress of RANSAC has earned considerable attention from researchers since 

this method was introduced by Fischler and Bolles (Fis- chler & Bolles 1981) regarding the 

convergent speed and performance (Xing & Huang 2010; Zhang et al. 2011; Bhattacharya & 

Gavrilova 2013; Guo et al. 2015; Wang et al. 2016; Liu et al. 2017a). 

However, the RANSAC performance is affected by the match ability of keypoints which are 

the main input for estimating the pose. The keypoints detection is a crucial part of VOTE 
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because it provides the matching pair-keypoints and when the input space includes a lot of 

false matching keypoints, the estimation of the poses will be complicated and the RANSAC 

performance will be remarkably low. It is noted that the main source of the false matching 

keypoints "outliers" is the keypoints detection methods. 

In a real environment, the captured scenes suffer from high variations, such as scaling, 

perspectives, illumination and scattered objects where the current approaches using a single 

visual descriptor cannot detect the prominent features to find their corresponding keypoints 

in other image frames. 

The keypoints detection method needs to be robust and be able to find similar keypoints in 

the previous images regardless of any differences in image scaling, rotation, or variance of 

illumination. Keypoints detection has a primary influence on the accuracy of estimating the 

calibration matrix and the fundamental matrix which are used for estimating the camera 

poses (Govender 2009; SHI et al. 2016). 

Therefore, this chapter focuses on the keypoints detection stage in VOTE and proposes a 

new algorithm named MD-VOTE. The proposed method of a point selecting scheme 

provides the best points for feature matching. The three local feature descriptors, SURF, 

SIFT and ORB, are used to generate a potential combination of keypoints extracted from 

each image location with a proposed keypoint refinement method, whose function is to keep 

the distinctive keypoints and eliminate the overlapped keypoints, which will eventually 

reduce the trajectory estimation errors of a robot’s trip.  

This technical report is organized as follows: Section 1.0 highlights the VOTE and its 

challenges in extracting the distinctive keypoints.  Section 2.0 describes the proposed MD-

VOTE algorithm. Section 3.0 presents the experimental setup and the results of the 

trajectory estimation obtained by the proposed MD-VOTE algorithm and RTAB-Map 

examined under different conditions on the KITTI datasets. Finally, Section 4.0 gives a 

summary of the chapter.  

 

2.0 METHODOLOGY  

 

In this section, a new VOTE algorithm named MD-VOTE is proposed to use the multi- ple 

descriptors "SURF, SIFT and ORB" based on the PnP-RANSAC scheme to estimate the 

robot’s trajectory along visited locations. The proposed algorithm selects a set of distinctive 

3D-2D matching keypoints which are extracted from the image locations by using the 

keypoint detectors method of each descriptor individually. Algorithm 1 illustrates the 

proposed MD-VOTE procedures and Figure 1 shows the flowchart of the proposed MD-

VOTE algorithm. 

The following paragraph explains the proposed algorithm MD-VOTE relating to the 

traditional VOTE processes flowchart shown in Figure 2 

 

2.1   Keypoints Detection 

 

At first stage, the keypoint detector from each visual descriptor: SURF, SIFT and ORB 

detect their keypoints individually from the current image location. After that, the pro- 

posed algorithm ranks each keypoint according to its response value as described in 

paragraph a.  followed by the refinement process as described in paragraph b..  Next, visual 

features are extracted from each refined keypoint, and the description of such keypoints are 

generated based on its corresponding descriptor. The final process in this stage is the key 

frame selection where the proposed algorithm selects the last frame, image location, 

available in the STM. 
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Figure 1: The flowchart for the proposed MD-VOTE algorithm 
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Algorithm 1 : MD-VOTE 

1:  k pSU RF is a set of 2D keypoints detected by SURF keypoint detector from the cur- 

rent image It 

2:  k pSIF T is a set of 2D keypoints detected by SIFT keypoint detector from the current 

image It 

3:  k pORB is a set of 2D keypoints detected by ORB keypoint detector from the current 

image It 

4:  Ranked the keypoints k pSU RF based on the Determinant of Hessian (DoH) value of 

each keypoint. 

5:  Ranked the keypoints k pSIF T based on the contrast value of each keypoint. 

6:  Ranked the keypoints k pORB based on the Harris corner measure value of each 
keypoint. 

7:  t o pSU RF is a set of the top k keypoints from k pSU RF 

8:  t o pSIF T is a set of the top k keypoints from k pSIF T 

9:  t o pORB is a set of the top k keypoints from k pORB 

10:  k pall is a set of the combination of keypoints k pall = t o pSU RF ∪ t o pSIF T ∪ t o pORB 

11:  k pre f ined = KeypointRefinement(k pall ,dmin) 
12:   f  = Feat ureE xt ract ion(k pre f ined , SU RF, SIF T, ORB), extracts the corresponding 
features of each keypoint based on its own descriptor. 

13:  k ppair  = PairwiseMat ching(k pre f ined , f , Ikey f rame), where Ikey f rame is the keyframe 

image. 

14:  k p3D is a set of 3D keypoints extracted from a keyframe image based on the corre- 

sponding k ppair . 

15:  poset is the corresponding pose of the camera at time t which is estimated by using 

PnP − RANSAC(k pre f ined , k p3D). 

 

 

a.    Ranking and Selecting Keypoints 
 

 

The proposed algorithm starts with detecting three sets of keypoints using the three visual 

descriptors SURF, SIFT and ORB from the current image location.  Each set of 

keypoints is ranked individually based on the keypoint response value as explained below: 

 
1. The SIFT’s keypoints detector applies the DoG in order to recognize as much as possible 

of the keypoints by generating several Gaussian-blurred images. These images are based 

on several scales of the input image. 

After that, the SIFT’s keypoints detector computes the DoG images based on the 

subtraction of neighbors in scale space from each other. Based on the DoG images, the 

keypoints are selected if they meet the following conditions: (1) they are locally extremal 

in the DoG images in space and scale. (2) They fulfil the threshold ratio of eigenvalues 

of the Hessian matrix. (3) The keypoints contrast is high. The keypoints which succeed 

are detected by interpolating through the DoG images (Lowe 2004).  The contrast value 

is the keypoint response value which is used to determine how strong the keypoints are 

(Itseez 2014). 

 

2. The SURF descriptor is partly inspired by SIFT, where the keypoints in SURF starts 

with computing integral images which are fast in generating the Laplacian of Gaussian 
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images using a box filter with various sizes.  After that, the key- points are detected as 

local maxima of the DoH on different levels applied to the integral image (Bay et al. 

2008). The DoH value is the keypoint response value which is used to determine how 

strong the keypoints are(Itseez 2014). 

 

3. The ORB develops oFAST for the keypoints detector which enhances the FAST detector. 

The oFAST detects the keypoints from the input image based on the FAST detector 

with the radius of 9 for the circular of the connected pixels around the corner. Then, the 

keypoints are sorted out based on Harris corner computations to select the top keypoints 

(Rublee et al. 2011b). The Harris corner computation produces the keypoint response 

value which is used to determine how strong the keypoints are (Itseez 2014). 

 
After the ranking of each keypoint set, the top k keypoints are selected from each keypoint set 

and are combined using the following equation: 
 

 

k pall = t o pSU RF ∪ t o pSIF T ∪ t o pORB                                           (1) 
 

 

 

 

where t o pSU RF , t o pSIF T , t o pORB are the sets of the top k keypoints extracted from each 

descriptor.  Finally, the set k pall  is passed to the next process to keep the distinctive 

keypoints and eliminate the overlapped keypoints as described in the next paragraph. 
 

 

 

 

b.    Keypoint Refinement 
 

 

The result of the previous process is the set of keypoints k pall  which contains the top k 

keypoints detected by each descriptor. In this stage, the keypoint refinement method keeps 

the distinctive keypoints and eliminates the overlapped ones. The distinctive key- points are 

selected according to the highest response value in a limited area. The area size is defined 

by the radius dmin. 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 2: A simple example for the refining method. 
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Figure 2.0 shows an example of the refining method as follows: 
 

 

1. Sorts out the keypoints in the set k pall  according to the keypoint location in the image. 

2. k pd is a set of keypoints which includes the first keypoint k p0 in the set k pall . 

3. The set k pd  also includes all keypoints lying within a distance dmin from the keypoint 

k p0. 

4. The function selects the keypoint from the set k pd  which has the highest rank based on 

its corresponding descriptor. As shown in Figure 2.0, the set k pd  in- cludes the 

keypoints [k p1, k p2, k p3] whose corresponding ranks are [2, 9, 5] re- spectively. The 

keypoint k p2 is selected because it obtained the highest rank as the keypoint with the 

highest rank is more distinctive and traceable. 

5. The selected keypoint from the previous step is added to the set k pre f ine and the set k pd is 

eliminated from the set k pall . 

6. The steps (2,3,4,5) are repeated until k pall is empty 

 

2.2   Keypoints Tracking 
 

The second stage handles the pairwise matching of the keypoints and checks the mutual 

consistency. After refining the combined keypoints, each descriptor processes the pairwise 

matching of its keypoints. This set of keypoints is pairwise matched between the current 

image location and the key frame image location using the NNDR approach with k-d tree 

and produces the set of matched pair-keypoints (Labbe & Michaud 2013). Then, the 

proposed algorithm extracts the 3D points from the key frame based on the corresponding 

2D keypoints. At this stage, the refined 2D keypoints and there corresponding 3D 

keypoints are passed on to the next stage of motion estimation. 
 

 

 

 

2.3   Motion Estimation 
 

The motion estimation stage is the stage where the pose is estimated between the cur- rent 

image location and the key frame location.  The refined 2D keypoints and their 

corresponding 3D keypoints are used to estimate the translational and rotational matrix by 

using PnP-RANSAC approach which eliminates the outlier. 

Finally, the pose of the camera related to the current image location is saved in the map 

representing the movement motion between the two locations as translational and rotational 

matrices. 

 

3.0   Experimental Results and Discussion 
 

The proposed MD-VOTE algorithm performance was evaluated using three outdoor 

scenes: the sequences 00, 02 and 05 from the public dataset KITTI (Geiger et al. 2012b). 

KITTI is a stereo-image dataset provided with visual odometry ground truth for the 

sequences. This dataset is used extensively in the literature to evaluate the performance of 

trajectory estimation algorithms (Fanfani et al. 2016; Mur-Artal & Tardós 2017; Mur- Artal et 

al. 2015; Pire et al. 2015; Engel et al. 2014). 

The average translational and average rotational error criteria are used to evaluate the 

performance of the proposed MD-VOTE where the translational error is measured in 

percentages, and the rotational error is measured in degrees per meter.  The evaluation 
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criteria calculate the translational error using the segments of the trajectory at 100, 200,. . . , 

800m lengths.  
 

4.0   Experimental Setup 
 

The performance evaluation of the proposed algorithm MD-VOTE on KITTI outdoor 

environments uses the KITTI Vision Benchmark Suite (Geiger et al. 2012b). This 

experiment applies to the following sequences:  (1) Seq-00 with 4541 images over the 

distance of 3714m, (2) Seq-02 with 4661 images over the distance of 5075m and (3) Seq-05 

with 2761 images over the distance of 2223m. These sequences are the longest path in the 

KITTI dataset which can show the efficiency and robustness of the proposed algorithm in 

long paths. 

All the parameters of the visual descriptors SURF. SIFT and ORB are set as reported in 

OpenCV (Itseez 2014).  The value of the variable maximum number of keypoints extracted 

from the image being determined at 400 points for each descriptor. This value is a default set 

by RTAB-Map and used as the previously proposed algorithms EBF-AL and EBF-APL. For 

comparative purposes, RTAB-Map is used as a VOTE benchmark, where its parameters are 

set up as reported in (Labbe & Michaud 2014; Labbé 2014). 

 

4.1   Trajectory Estimation Results and Discussion 
 

The first experiment evaluates the performance of the benchmark VOTE using the three 

visual descriptors SURF, SIFT and ORB individually whereas each descriptor is tested with 

a different number of keypoints: 400 keypoints and 1000 keypoints. This experiment is 

conducted on the same three sequences (00, 02 and 05) in the KITTI dataset. Table 1 shows 

the results of the first experiment conducted using 400 and 1000 keypoints in trajectory 

estimation through two values, the translational and rotational errors. An average 

translational error is measured in percentages, and an average rotational error is measured in 

degrees per meter. 

The results show that the benchmark VOTE using the visual descriptor ORB has scored the 

least errors compared to SURF and SIFT using the three sequences with a maximum of 

1000 extracted keypoints used in trajectory estimation. In contrast, with a maximum of 400 

extracted keypoints, the benchmark VOTE using the visual descriptor SURF has scored the 

least errors compared to SIFT and ORB using the same sequences. The reason is that SURF 

is capable of extracting and matching the 400 keypoints more efficiently than other feature 

descriptors which improve the PnP-RANSAC process in estimating the poses. 

Significantly, the SURF with 400 keypoints has scored the best results in the trajectory 

estimation for the sequences 00 and 02 over the other descriptors even with a different 

number of extracted keypoints. This fact shows that the quality of keypoints is more 

significant than the quantity in estimating the trajectory for the long sequences such as 00 

and 02. In the case of sequence 05, ORB with 1000 keypoints score the least errors due to its 

high speed in detecting and extracting the keypoints. 

Figures 3, 4 and 5 show the trajectory estimation for the sequences:00, 02 and 05 

respectively using the three visual descriptors SURF, SIFT and ORB in addition to the 

ground truth trajectory. The figures show that the estimated trajectories using 1000 

keypoints are nearly the same even though they are less accurate than the estimated 

trajectories using 400 keypoints. There is a remarkable disparity between the estimated 

trajectories using 400 keypoints over the estimated trajectories using 1000 keypoints. 

 

Table 1: Trajectory estimation errors for sequences 00, 02 and 05 using the benchmark 

VOTE "RTAB-Map" with different visual descriptors with the extracted 400 and 1000 
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keypoints. The average translational error is shown in percentages and the average 

rotational error is shown in degrees per meter. 
 

 
 

No. 

Keypoints 

KITTI 

Sequence 

Seq-00, 4541 Images Seq-02, 4661 Images Seq-05, 2761 Images 

 

4
0

0
 

Visual 

descriptor 

Translation % Rotation d/m Translation % Rotation d/m Translation % Rotation d/m 

SURF 0.016375 0.000113 0.013978 7.4E-05 0.010763 6.5E-05 

SIFT 0.019614 0.000141 0.017221 9.9E-05 0.01249 6.8E-05 

ORB 0.017698 0.000116 0.015105 9.6E-05 0.011001 6.4E-05 

 

1
0

0
0
 SURF 0.025192 0.000138 0.015103 8.38E-05 0.009958 0.000056 

SIFT 0.025316 0.000152 0.01533 9.93E-05 0.01165 0.00007 

ORB 0.02509 0.000137 0.015001 0.000082 0.009754 0.000054 
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(a) 

 

 
(b) 

 

Figure 3: Trajectory estimation for KITTI Sequence-00, 4541 images using different feature 

descriptors: (a) using 400 keypoints. (b) using 1000 keypoints 

 

The second experiment is conducted to evaluate the performance of the proposed MD-VOTE 

algorithm with the value of a different radius dmin, and shows the impact of a 

  

Cop
yri

gh
t@

FTSM



LP-FTSM-2018-002 
 
 

 

 

 
 

Figure 4: Trajectory estimation for KITTI Sequence-02, 4661 images using different feature 

descriptors: (a) using 400 keypoints. (b) using 1000 keypointsCop
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(b) 

 

Figure 5: Trajectory estimation for KITTI Sequence-05, 2761 images using different feature 

descriptors: (a) using 400 keypoints. (b) using 1000 keypoints 
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Table 2: Trajectory estimation errors for sequence 05 using MD-VOTE with different radius 

values.  No.  Keypoints = Maximum number of keypoints detected from the images 

different radius on the efficiency of the proposed algorithm in estimating the trajectory. 

 
 

Distance in pixel No. Keypoints Translation % Rotation d/m 

No filter 1200 0.010084 6.1E-05 

dmin = 1 980 0.008955 5.4E-05 

dmin = 3 719 0.010589 5.9E-05 

dmin = 6 518 0.011374 6.6E-05 

dmin = 9 266 0.012149 8.2E-05 
 
 
 

 
Table 2 shows the trajectory estimation errors of the proposed MD-VOTE algorithm using 

sequence 05 with 2761 images from KITTI datasets. Figure 7 shows the trajectories which 

are estimated by the proposed MD-VOTE using different radius values against the ground 

truth. 

Figure 6 shows an example of the number of keypoints detected by the three visual 

descriptors SURF, SIFT and ORB, and shows the impact of keypoint refinement method 

using a different radius on the number of keypoints. The image location in the example is 

the location number 5 taken from sequence 05 of the KITTI dataset. 

It is noticed that using the proposed MD-VOTE algorithm without refining the keypoints 

which are 1200 keypoints extracted from the three visual descriptors; the MD-VOTE gets 

0.010084% and 6.1E-05 m/d for the average translational and average rotational errors 

respectively.  As for MD-VOTE with the keypoints refinement using radius dmin = 1, the 

maximum number of keypoints reaches 980 keypoints and scores 0.008955% and 5.4E-05 

d/m for the average translational and average rotational errors respectively which are the 

least recorded errors for the sequence 05. Furthermore, when the radius value increases, the 

number of keypoints decreases and the errors rate increases. 

Figures 8.a and 8.b show the translational and rotational errors as a function of the path 

length and the trajectory segmented at 100, 200,. . . , 800m lengths (Geiger et al. 2012a) 
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(a) 

 

 
(b) 

 

 
(c)  

 

 
(d) 

 

 
(e) 

 

 

Figure 6: Example for the keypoint refinementmethod using a different radius 
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Figure 7: Trajectory estimation for sequence 05 using MD-VOTE with different radius values.
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(a) The translation error as a function of path length                                     (b) The rotation error as a function of path length 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

 

 

(c) The translation error as a function of speed                                              (d) The rotation error as a function of speed 
 

Figure 8: The translational and rotational errors as a function of speed and path length for sequence 05 using MD-VOTE with different radius 

values
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It is noticed that the proposed MD-VOTE algorithm used with the keypoint 

refinement using radius dmin = 1 estimates the trajectory for sequence 05 with errors de- 

creasing proportionately with the distance travelled which scored the least errors; i.e., 

0.004638% and 0.000022 d/m for translational and rotational errors respectively. 

Additionally, Figures 8.c and 8.d show the translational and rotational errors as a 

function of the moving speed. It is noticed that the proposed MD-VOTE algorithm with 

radius dmin = 1 scored the least errors over linear change speed between 6 km/h to 

12 km/h. 

It is concluded from Figure 8.c that the translational error increases as a vehicle move 

faster. As a matter of fact, the vehicle speeds up when it moves in a long straight path. 

Conversely, Figure 8.d shows that the rotational error is inversely proportional to speed, 

where the rotational error appears with the rotational movement of the vehicle, and the 

vehicle slows down its speed as it rotates. 

Now, based on the results shown in Table 2, it was decided to select the radius dmin = 

1 to be used in other experiments because MD-VOTE algorithm with radius dmin = 1 has 

scored the least trajectory estimation errors for sequence 05. Accordingly, whenever the 

MD-VOTE algorithm is mentioned throughout this research, it means that it is the proposed 

algorithm that includes the keypoint refinement method using radius dmin = 1, unless it is 

explicitly stated otherwise. 

The final experiment evaluates the performance of the proposed MD-VOTE 

algorithm and compares between the proposed MD-VOTE with, and without the keypoint 

refinement method against the standard RTAB-Map in trajectory estimation for the three 

sequences 00, 02 and 05 from the KITTI dataset. Table 3 shows the average translational 

and average rotational errors for each sequence. The last row in Table 3 shows the relative 

change ratio calculated between the proposed MD-VOTE algorithm with the keypoint 

refinement method and the standard RTAB-Map. For further information about relative 

change, see Section d.. 

To clarify the efficiency of the proposed MD-VOTE algorithm, a comparison has 

been made between MD-VOTE and RTAB-Map in terms of relative change with
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Table 3: Trajectory estimation errors for sequences 00, 02 and 05 using the proposed MD-VOTE with and without the filtering method against 

RTAB-Map 
 

 

 
 

Algorithm name 
 

No. of Keypoints 
Seq-00, 4541 Images Seq-02, 4661 Images Seq-05, 2761 Images 

Translation % Rotation d/m Translation % Rotation d/m Translation % Rotation d/m 

RTAB-Map 1000 0.024504% 0.000126 0.014704% 0.000077 0.010315% 0.000063 

MD-VOTE 

without filter 

 

1200 
 

0.014994% 
 

0.000101 
 

0.017034% 
 

0.000099 
 

0.010113% 
 

0.000064 

MD-VOTE 

with filter 

 

980 
 

0.013636% 
 

0.000096 
 

0.013432% 
 

0.000078 
 

0.008955% 
 

0.000054 

Relative change 

MD-VOTE vs RTAB-Map 

 

-2% 
 

-44.35% 
 

-23.80% 
 

-8.65% 
 

+1.29% 
 

-13.18% 
 

-14.28% 
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respect to trajectory estimation errors. The results of the comparison based on sequence 

00, Table 3 shows that MD-VOTE successfully reduces the translational and rotational errors 

by −44.35% and −23.80% respectively regarding relative changes with respect to RTB-

Map.  Similarly, the results of the comparison based on sequence 02, show that MD-

VOTE successfully reduces the translational error by −8.65%, whereas the rotational error 

increases by +1.29%.  As for sequence 05, both the translational and rotational errors 

decrease by −13.18% and −14.28% respectively. 

 
Figure 9 shows the trajectory estimation for the sequence 00 constructed by the 

three algorithms MD-VOTE with, and without filtering against RTAB-Map whereas Figures 

10.a and 10.b show the translational and rotational errors as function of path length, and 

Figures 10.c and 10.d show the translational and rotational errors as function of moving 

speed. The proposed MD-VOTE algorithm has scored the least errors in both translational 

and rotational errors (0.013636%, 9.6E-05 d/m) respectively. We wish to compare these 

trajectory errors with respect to the trajectory errors estimated by RTAB-Map, 

 
Figure 11 shows the trajectory estimation for the sequence 02 constructed by the 

three algorithms MD-VOTE with, and without filtering against RTAB-Map whereas Figures 

12.a and 12.b show the translational and rotational errors as function of path length and 

Figures 12.c and 12.d show the translational and rotational errors as function of moving 

speed. The proposed MD-VOTE algorithm has scored the least errors in both translational 

and rotational errors (0.013432%, 7.8E-05 d/m) respectively. 

 
Third, Figure 13 shows the trajectory estimation for the sequence 05 constructed by 

the three algorithms (MD-VOTE with, and without filtering against RTAB- Map) whereas 

Figures 14.a and 14.b show the translational and rotational errors as function of path length 

and Figures 14.c and 14.d show the translational and rotational errors as function of 

moving speed.  The proposed MD-VOTE algorithm has scored the least errors in both 

translational and rotational errors (0.008955%, 5.4E-05 d/m) respectively. 
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Figure 9: Trajectory estimation errors for sequences 00 using the proposed MD-VOTE with and without the filtering method against RTAB-Map
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(a) The translational error as a function of path length                                  (b) The rotational error as a function of path length 
 
 
 

 

 
 
 
 
 

 
 
 
 
 
 

 

 

(c) The translational error as a function of speed                                           (d) The rotational error as a function of speed 
 

Figure 10: The translational and rotational errors as a function of speed and path length for sequence 00 using the proposed MD-VOTE with 

and without the filtering method against RTAB-Map.
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Figure 11: Trajectory estimation errors for sequences 02 using the proposed MD-VOTE with and without the filtering method against RTAB- 

Map
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(a) The translational error as a function of path length                                  (b) The rotational error as a function of path length 
 
 
 

 

 
 
 
 
 

 
 
 
 
 
 

 

 

(c) The translational error as a function of speed                                           (d) The rotational error as a function of speed 
 

Figure 12: The translational and rotational errors as a function of speed and path length for sequence 02 using the proposed MD-VOTE with 

and without the filtering method against RTAB-Map.
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Figure 13: Trajectory estimation errors for sequences 05 using the proposed MD-VOTE with and without the filtering method against RTAB- 

Map
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(a) The translational error as a function of path length                                  (b) The rotational error as a function of path length 
 
 
 

 

 
 
 
 
 

 
 
 
 
 
 

 

 

(c) The translational error as a function of speed                                           (d) The rotational error as a function of speed 
 

Figure 14: The translational and rotational errors as a function of speed and path length for sequence 05 using the proposed MD-VOTE with 

and without the filtering method against RTAB-Map.
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4.0   SUMMARY 
 

The PnP-RANSAC method is applied to trajectory estimation. However, the single key- points 

detector cannot efficiently tackle a challenging environment which contains fluctuating 

scenes. Trajectory estimation requires distinctive matching keypoints that can be tracked to 

estimate the accurate trajectory of a robot’s camera movement between a sequence of image 

locations. In this chapter, the proposed algorithm MD-VOTE com- bines the keypoints which 

are extracted from the multiple visual descriptors, SURF, SIFT and ORB. The combined 

keypoints are further filtered with the proposed key- point refinement method to select the 

most distinctive keypoints which contribute to the PnP-RANSAC to improve the VOTE 

performance. 

The proposed algorithm MD-VOTE is evaluated on the longest three sequences 

00, 02, and 05 from the outdoor dataset KITTI which is a widely used benchmark. The 

evaluation results are compared with RTAB-Map using single and multiple visual 

descriptors. The results of the experiments indicate that the proposed MD-VOTE significantly 

outperforms RTAB-Map in terms of translational and rotational errors, whereas the proposed 

algorithm scores the least translational and rotational errors (0.013636%, 0.000096); 

(0.013432%, 0.000078) and (0.008955%, 0.000054) in the three sequences 00, 02 and 05 

respectively. Additionally, the proposed MD-VOTE scores relative change ratio (-44.35%, -

23.80%); (-8.65%, +1.29%) and (-13.18%, -14.28%) regarding RTAB- Map for translational 

and rotational errors in the three sequences 00, 02 and 05 respectively. 
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