
PS-FTSM-2020-015 

 

 

ONLINE CLUSTERING OF EVOLVING DATASTREAMS 

INTO ARBITRARY SHAPED CLUSTERS (CEDAS) USING 

PARALLEL PROGRAMMING 
 

Alqasimi Saddam Mohammed Saif Nasser, Elankovan A. Sundararajan 

 
Faculty of Information Science and Technology 

Universiti Kebangsaan Malaysia 

43600 UKM Bangi, Selangor Malaysia. 

 
Gp06082@siswa.ukm.edu.my, elan@ukm.edu.my 

 

ABSTRACT 

 
Recently, stream data mining technologies such as data stream clustering algorithms became 

highly demanded like K-Means, DBSCAN, K-medoids, CURE, etc. Various applications such as 

multimedia data, financial transactions, telecommunication, and planetary remote sensing 

require real-time clustering due to the evolving of data flow continuously. As the advance of 

networks and the amount of data transmitted in real-time, it becomes harder even though some of 

the current sequential algorithms keep up with the evolving of data stream in real-time. Some 

suffer from some weaknesses such as lower processing time in the data stream like clustering 

algorithm called CEDAS. We proposed to develop a multi-core CPU-accelerated CEDAS using 

Parallel Programming in MATLAB. The new technique aims to achieve a higher speed while 

maintaining accurate and pure clusters. The proposed technique has three phases. First, 

Initialization where all Parameters’ and variables are set. The second phase is dataset 

partitioning, using a decomposition model to break the data set stream into smaller data streams 

where it can be executed independently as independent threads by the cores using their own 

smaller data component of the data set. Then, parallel clustering and data gathering, using 

Parallel for-loop (Parfor) of MATLAB Parallel Computing Toolbox (PCT), we distribute the 

dataset streams between CPUs' cores/workers which perform CEDAS parallelly before we gather 

all workers results and save them. We use TicToc statements and ParTicToc tool to get 

processing time of current and proposed algorithms. The experimental results show P-CEDAS 

processing time improved by 3.5 to 14.5 times faster than sequential CEDAS. The proposed 

Parallel CEDAS algorithm (P-CEDAS) quality is assessed using two quality metrics, the Mean-

Purity and Mean-Accuracy on synthetic and real datasets each of which with various 

characteristics, P-CEDAS outperform CEDAS clusters purity and accuracy for most of the cases. 

Furthermore P-CEDAS achieved higher speed up on four cores of multicore CPU. 

 

1. INTRODUCTION 

A data stream is a set of series of instances that can be read once or limited times using finite 

memory storage and finite computing capability as well (Zimányi & Kutsche 2015). Datastream 

is generated by various sources continuously in such a way that the data mining process becomes 

very challenging and requires a particular process of extracting structures of knowledge from 

evolving and rapid data records where this process is known as data stream mining (Kokate et al. 

2018). Datastream clustering is conducted as a preprocessing of data stream mining. Additionally, 
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data stream clustering is the process of assigning similar data points into groups called a cluster as 

it arrives online in the data stream without prior information.  

Clustering is one of the most important tasks in the data mining process as many fields and 

applications rely on it, including biology, physics, and marketing. Datastream mining has to 

follow the necessity of real-time response, limitation of memory, single-pass, and concept-drift 

detection (Kokate et al. 2018)The data is processed in an incremental manner so that the 

technique used does not access the entire data. On the other side, it focuses on the most beneficial 

way to predict the value or class of the new instance/datapoint using previous knowledge from 

the previous data point. Some examples of data streams are ATM transactions, sensors data, and 

network traffic (Zimányi & Kutsche 2015)However, clustering of a high multi-dimensional data 

stream in a real-time became a very challenging process due to data characteristics such as 

clustering in limited memory and time with single pass over the evolving data streams as well as 

handling noisy data (Amini et al. 2014), with plenty of applications like network intrusion 

detection, monitoring environmental sensors, telecommunication, social networks, and web site 

analysis, etc. (Amini et al. 2014; Amini & Wah 2012). 

The wide sources of data streams result in various data formats, and the advance of real-time data 

streaming makes large volume data in such a way that the traditional clustering algorithm cannot 

handle the clustering process as required. Researchers have developed new algorithms that can 

facilitate and accelerate the clustering process, such as k-means,  k-medoids, and DBSCAN, etc. 

(Amini & Wah 2012). In some studies, these algorithms were also modified to fit the data which 

was being clustered, for instance when the clustering process causes a delay of data streaming, 

running the algorithms on multi-core CPU in parallel rather than serial was one of the best 

solutions. 

CPUs multicore is an associate computer circuit chip that uses two or additional procedure 

engines (cores) placed in a single processor. This new approach has proposed to separate the big 

task of work of applications into small tasks/threads and unfold them over multiple execution 

cores to make the pc system take advantage of the higher performance and better responsiveness 

of the system. Computers with more than one processor provide the potential to accelerate 

application executions (Fotohi et al. 2019). Multi-Threading is an effective method for 

application developers to take advantage of parallelism in hardware. Completely different threads 

will run on different processors at the same time utilizing standard APIs and system calls; the 

programmatic method in which a program requests a service from the kernel of the operating 

system it's executed on (Rinku & Asha Rani 2017). Through Multicore based Multithreaded 

Programming (MCMTP), the throughput of an embedded computing system will be increased. 

In multicore design, every core contains its own processing resources as a single CPU, except the 

Global Memory that is shared between the cores. Tasks can be split into smaller tasks to produce 

simply operable components/threads (Rinku & Asha Rani 2017). A thread could be a unit of 

execution within a method that's created and maintained to execute a group of threads. 

Alternatively, threads will be executed from an associate software system to a different one, 

however, the software system is in most cases accountable to schedule the execution of various 

threads. Multi-threading increases the efficiency of processor performance with a low-cost 

memory system (Fotohi et al. 2019). Performance gets increased by gathering the outputs of the 

individual threads that have been executed on individual cores (Fotohi et al. 2019; Rinku & Asha 

Rani 2017). 

CPUs are dedicated hardware for carrying out the instructions of computer programs. Due to 

some limitations in processors' heat, architecture complexity, the gap between processing speed 

and speed of memory access times, etc., CPUs have evolved into  multicore CPUs and are being 

used as highly parallel multi-core processors. General-purpose computing can also benefit from 

the computing power of multicore CPUs (Al-Ayyoub et al. 2016). General-purpose computing on 

multicore CPUs became popular with this advance; it was obvious the problems related to vectors 

and matrices with multi-dimensions vectors become effortless to translate to parallel processors 
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(Du et al. 2012) because multicore CPUs are capable to deal with this type of tasks. The first 

multicore CPU was developed by IBM and had two cores on a single chip. Parallel programming 

languages like Sh/RapidMind and Brook were not easy to use because of the need for 

understanding the underlying graphical concepts, however, later MPI and OpenMP appeared and 

allowed programmers to focus on high-performance computing concepts rather than multitask 

concepts (Du et al. 2012). 

Processors (cores) in multicore CPUs are run with high frequencies, using the number of cores 

that can guarantee high performance with a low cost of energy (Al-Ayyoub et al. 2016). 

Moreover, the modern CPU pipeline uses the speed of a multi-core CPU to maximum advantage 

by executing a series of instructions in parallel per clock. Essentially, the pipelined multi-core 

CPU has various arithmetic units in a sequential and simultaneous manner to perform a chain of 

complex equations simultaneously in one execution cycle. These pipelines were matched 

effectively appropriate to scientific computing requirements, and since then they have been 

developed for this purpose. CPUs can run up to 32 threads. Therefore, many researchers utilize 

this advantage to improve the performance of many algorithms (Loh & Yu 2014). 

Parallel programming detaches the code into sub-blocks and implements them at the same time, 

which provides a fast processing time in the absence of dependencies between executed 

applications capable to run up to 32 threads in parallel. Parallel programing has speeded up many 

algorithms especially those which coped with evolving or high dimension data stream. 

The main objective of this project is to accelerate and evaluate a data stream clustering algorithm 

“Fully Online Clustering of Evolving Data Streams into Arbitrarily Shaped Clusters” (Hyde et al. 

2017). Based on (Hyde et al. 2017), the old algorithm named (CODAS) has some limitations 

during the clustering process of not updating the removed micro-clusters which makes it non-

fully online as it does not support clusters evolving during data stream clustering process. 

CEDAS was a development to CODAS as it becomes fully online, solving those limitations. 

CEDAS code will be optimized in some logic parts and then, using the power of parallel 

processing on a multi-core CPU, the clustering process will run in a parallel manner. Further, 

CEDAS will be evaluated and its productivity will be shown by comparing it with current serial 

CEDAS. 

2. THE CURRENT ALGORITHM CEDAS 

Accelerating the clustering of data-streams is considered the most important factor to get the 

best results when the data stream is evolving rapidly. Many techniques have been successfully 

applied to solve the clustering of evolving data-streams and this includes (Hyde et al. 2017) 

which successfully enhances data stream clustering by offering main processes of clustering like 

joining and separating macro-clusters as they evolve in a fully online manner using CPU. Where 

the study aimed to implement clustering data into arbitrarily shaped clusters using a fully online 

clustering technique. the study claimed that an old technique called "clustering of continuous data 

streams into arbitrary shaped" (CODAS) has some limitations during the clustering process which 

makes it non-fully online. Moreover, Hyde et al introduce a developed algorithm named 

(CEDAS) as a shortcut to "Clustering of Evolving Data-streams into Arbitrary Shapes", which 

proved from the experiments and comparisons with similar its capability of accurate detecting the 

anomaly in a defined period of time which in order give a great view of possible applications in 

network security and atmospheric science research as well as its efficiency and ability to 

automate detection across multiple dimensions that cannot be easily visualized or to present a 

visualization for primary interpretation by the user. CEDAS algorithm has four main parts, first 

the Initialization part to establish the structure where the related information of all micro-clusters 

will be stored. The second part is Assign and Update Cluster, to assign data points and update the 
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micro-clusters information with the arriving data sample, and that to decide when the data point 

will be added to a Micro Cluster (MC) or Outlier. The third is Kill MC when no data points are 

fall near a previous data point this course decreases its energy till to be deleted by this part. The 

last part is Update MCs Graph and this happens recursively due to the evolving of the data 

stream, the clustering of data points will be updated till all MCs grouped with each other by 

Edges according to their intersecting data points in order to perform MCs Graph (Macro-

Clusters). CEDAS algorithm four main parts are listed below 

 

CEDAS: initialization. 

Input : x , r0  

Create micro-cluster structure containing: 

C 1 (Centre ) = x 

C 1 (Count) = 1  

C 1 (Macro) = 1 

C 1 (Energy ) = 1  

C 1 (Edge ) = 1 

 Set number of micro-clusters to 1 

 Set modified micro-cluster number, for use updating the graph structure. 

 

CEDAS: update micro-cluster  

Input : x , r0  

find distance to nearest micro-cluster center, d min 

if d min < r 0 then 

     reset micro-cluster Energy to 1 

     increment number of samples contained in micro-cluster 

     if data is within micro-cluster shell then 

          recursively update micro-cluster center 

     end 

else 
     Create new micro-cluster 

end 

CEDAS: : kill micro-cluster. 

Input C, Decay 

Reduce all C(Energy ) by Decay  

if Any C(Energy ) < 0 then 

     Remove micro-cluster 

     Remove all edges containing the micro-cluster 

     Decrement the number of micro-clusters  

end 

CEDAS: update graph. 
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if A micro-cluster has been modified then  

     if the micro-cluster edge list has changed then  

          Set a new macro-cluster number throughout the graph 

     end 

end 

 if Any micro-clusters have died then 

     Set new macro-numbers for the sub-graphs of its previous edges 

 end 

CEDAS Algorithm  

 

3 THE PROPOSED APPROACH P-CEDAS 

The first practical step in developing CEDAS algorithm is to determine the weaknesses and 

the parts that can be paralleled by MATLAB Parallel Computing Toolbox (PTC). MATLAB 

Profiling is a way to identify functions are consuming the most time and parallelizable parts in 

CEDAS The weakness of the current version lies in its long-time period and low speed that limits 

the algorithm's ability to keep up with the increase in sample speed, which means increase 

processing time in general. Also, the way that CPU executes threads sequentially may use 15% of 

CPU or in other words, only one core is used and that is not efficiently capable with evolving data 

stream any more as the data stream rate of transfer has increased nowadays. Figure 2.1 shows the 

side of MATLAB Profiling 
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Figure 2.1 Profiling (Run and Time CEDAS Algorithm) 

CEDAS algorithm phases are very dependent on each other and have no complex calculations 

that can be particularly parallelized but we realized from studying some previous researches, to 

overcome this problem in some studies the serial processes that can not be parallelized were 

broken down into smaller parts and performed them in parallel while they run in sequential 

manner locally and independently by multiple threads on multiple cores/processors. CEDAS has 

three dependent steps that can gain more speed if they improved to run using the same concept. 

First is Assign and Update Cluster, to assign data points and update the micro-clusters 

information with the arriving data sample. The second that should come after 'Assign and Update 

Cluster' is 'Kill MC'. The third part is 'Update MCs Graph' which is happens recursively due to 

the evolving data stream. The power of MATLAB PTC was used to enhance the detected 

workload of the algorithm where the compute-intensive portion of the algorithm utilizes the 

100% of CPU cores and run in parallel. 

There are different programming models to perform parallel multi-threading. In this study, a data 

decomposition model is used. To analyze the data set, the clustering process needs to process it 

and break it down into smaller sets. Small sets with tasks can be executed independently as 

independent threads by the cores but using a separate data component of the data set. 
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First, an optimization applied on some logic parts in the current serial algorithm to  

implement it on Multi-Cores CPU and to match MATLAB Parfor conditions as well. Then, we 

add Parfor to work with the clustering process; we break down the dataset into smaller 

components as many as workers we have, then the partitioned datasets will be ready to be 

executed independently on one worker/block in parallel. Each worker will run in a sequential 

manner but all workers will work on their independent data simultaneously. P-CEDAS 

terminology is defined in the following: 

1. Sample: is referring to whichever one of a data point in the data set. 

2. Local density: is the number of samples of each micro cluster.  

3. Micro-cluster: a micro cluster formulated only when local density is higher than 

the threshold. 

4. Threshold: describes the minimal of samples within the radius of a micro cluster 

to formulate a micro cluster otherwise considered an Outlier. 

5. Outlier-micro-cluster: when the local density of the micro cluster is less than 

threshold it's considered an outlier.  

6. Macro cluster: containing a number of intersecting micro-clusters 

7. Graph structure: the intersecting micro cluster formulate a macro cluster and all 

the details are recorded in a Cluster.  

 

3.1 P-CEDAS ALGORITHM DESCRIPTION AND STAGES 

A description of each stage is illustrated in the following. Algorithm1 is running sequentially 

however algorithm 2 and 3 are running in parallel and sequential at the same time. 

3.1.1 Initialization and parameters setting 

This sets P-CEDAS Parameters’ values and creates a structure to save micro-clusters' (MCs) 

information, which happens with the first data sample. Pseudo-code is shown in algorithm1 

below. 

Algorithm 1: P-CEDAS: Initialization and parameters setting 

 

Parameters setting 

Set P-CEDAS parameters 

Set MC radius to 0.05 

Set Number of data samples to consider ‘recent data’ to decay ∈ {500,1000} 

Set the min density Threshold of MC to 4 

Initialization 

Create MC structure = {Center, Count,  Energy, X ∈ (1,2,3….,n)} 

Create Outliers structure = { Center, Count,  Energy, X ∈ (1,2,3….,n)} 

INTI Counter to 0 

INIT MCs-Graph {Nodes, Edges} 
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P-CEDAS parameters values are as same as CEDAS Decay, radius and Minimum Density 

Threshold since they should be set based on expert knowledge (Hyde et al. 2017). ‘radius’ is 

neighborhood radius so that any data points located on micro-clusters’ radius joins that particular 

micro-cluster. ‘Number of data samples’ value is dependent on dataset type where we set its value 

to 500 in case of artificial datasets and 1000 in case of the real high dimensional dataset. ‘𝐹𝑎𝑑𝑒 =
1/𝑑𝑒𝑐𝑎𝑦’ is the time when the micro cluster entirely disappear due to its energy decrement. 

‘Threshold’ is the minimum neighbors within the ε-neighborhood of a point to be considered a 

core point. 

Creating MCs and Outlier structures, ‘Centre’ is locating the position of the micro cluster 

in the data space. ‘Count’ stores and add up the count of data samples that are allotted to the MC. 

The ‘Count’ value is also used to enable updates of micro-cluster centers recursively. ‘Energy‘ 

used to specify the length of time since the last data has arrived in a micro cluster. Decay 

algorithm reduces ‘Energy’ when no data has been received by the micro cluster. Low ‘Energy’ 

allow unused MC entirely disappear; X presences one datapoint each iteration of the for loop 

from 1 till end of dataset. ‘ Edge’ lists the intersecting MCs. ‘Counter’ is defined as a modified 

MC number and will be used within the clustering process for updating graph structure. 

Initializing an MCs graph with two fields ‘Nodes’ will be the MCs and ‘Edges’ are the pairs with 

intersecting Nodes where points fall within intersect part of nodes.  the graph is used to define 

whichever MC belongs to Macro-clusters (Macro), MCs are linked with each other by edges 

inside the Macro to perform the arbitrary shape clusters.  

3.1.2 Dataset partitioning 

Keeping in mind that when data is partitioned and stream proportional portions of the data into 

the workers if all chunks fit into the cache on a core. some of the serial codes' overhead caused by 

single-core execution will be decreased. However, too small chunks will result a false 

performance improvement (Hershgal 2010). 

P-CEDAS partitions the dataset into small datasets so that each core of the CPU can have 

its single part of data and run the code independently as it has its data. Number of the produced 

data sets is depending on the number of CPUs' multiple cores we have. for example, if we have a 

CPU with 4 multi-core then the data set will be partitioned into 4 datasets. A simple Pseudo-code 

for this part is shown in algorithm 2 below. 

Algorithm 2: P-CEDAS: Dataset Partitioning 

 

Load data set 

NumSets = Get NumWorkers 

SmallSetSize = (DataSize / NumSets) 

Parfor i= 1 to NumSets         % Partition Dataset into NumSets of SmallSetSize 

set(1)= data(1, SmallSetSize) 

set(2)= data(SmallSetSize, SmallSetSize*2) 

set(3)= data(SmallSetSize*2, SmallSetSize*3) 
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Set(i)= data(SmallSetSize*(i-1), SmallSetSize*(i+1)) 

End 

 

Using MATLAB object of ‘cv’ partition class. Our data set has been partitioned and seated to 

small datasets for workers. After loading the data set, MATLAB ‘Random Number Generator’ is 

set to ‘default’ to avoid random parts of dataset and produce the same part of data every time P-

CEDAS running with same NumWorkers. ‘NumSets’ is the number of sets will be partitioned 

from the whole dataset, and as mentioned before NumSets will be as NumWorkers we have. 

‘SmallSetSize’ is the amount of data in each set, and last is the partitioning part where each set 

will get same amount of data using SmallSetSize. 

3.1.3 Parallel Clustering and Data Gathering 

In this stage, three main parts are ‘Assign datapoints and update cluster graph’, ‘Kill micro-

cluster’ and ‘update clusters relation table’. The three parts are executed by the multiple cores 

simultaneously as each one of the cores will work independently on its data that were previously 

prepared in algorithm 2. 

Algorithm 3: P-CEDAS: Parallel Clustering and Data Gathering  

 

Par (NumWorkers) 

Parfor  n= 1 to NumWorkers  

Par.tic  

Switch (NumWorkers) 

Case 1:              % Worker(1) do Clustering Process on set(1) 

for Counter= 1 to size (Set(1)) / sampleSpeed  

 time = time +1 

               for i=1 to sampleSpeed                     

                     Counter = Counter +1 

                    if not end of stream Then 

                       Read datapoint X ∈ (1,2,3….,n) 

                       Assign (CM) 

                   End 
                   Kill (CM) 

                   UpdateClustersRelationTable 

                   If time equal to datalogSpeed Then 

                     Create  DataLogged structure of CMs and Outliers 

                   End 

               End 

End 
Case 2: :              % Worker(2) 

 %Repeat case1 on set(2) 

Case n: :              % Worker(n) 
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 %Repeat case1 on set(n) 

Endswitch 

result{n} = DataLogged      %Gather and Save all Workers Results 

Par.toc  

End Pafor 
Plot (p)     %plot timing of each Worker 

Save clustering result set(i)= data(SmallSetSize*2, SmallSetSize*3) 

Set(i)= data(SmallSetSize*(i-1), SmallSetSize*(i+1)) 

End 

 

Clustering process will not be explained in detail since it is as same as in CEDAS (Hyde et al. 

2017). P-CEDAS uses ParTicToc tool for timing Parallel for Loops. What makes it special is the 

ability to observe various running costs that maybe occur when using Parfor loops, the use of 

each worker as well. ‘Par(NumWorker)’ creates an object of  Par class with a number of 

iterations (NumWorker). ‘Par.tic’ is to log the iterations start time and directly called after parfor. 

The next call is before ‘END’ Parallelfor, the reason for that is to inform the compiler that the 

variable is sliced so that it will allocate the end time of each worker separately. ‘Par.toc’ stops the 

clustering timing and then plots the result by using Par tool of all workers' overheads, the timing 

of each worker also saved in a structure. 

‘Parfor 1 To NumWorkers’ starting a par pool with the given number of workers. The statement 

‘Switch’ used to guarantee independent data access. While multi-threads are synchronized and 

not mixed to execute their part of the code. Since some of variables used inside Parfor are 

temporary variables, it means they will be released after parfor execution. Therefore, data 

gathering must be before ‘EndParfor’ using Sliced structure ‘result{n}’ where n refers to a 

worker number. DataLogged stores local clustering results that controlled by the inner for loop 

condition using the variable 'SampleSpeed' the number of samples to be obtained. Finally, 

combine the clustering result of all workers and save the clustering result of the whole resulted 

clusters, outliers, graph, parameters, processing time and counters. 

3.2 EXPEREMENNTAL SETUP 

Using a free tool in MATLAB (MathWorks) in a PC with  Intel® Core™ i5-4572U CPU @ 

3.20GHz and 24GB memory running on Windows10. 

Two synthetic data sets and one real are selected to evaluate P-CEDAS. Spiral contains 6012 data 

records; DS2-Class has 9919 of data records as well. However, KDD99ÇUP CUP'99 has around 

5 million, only 10% of it used in researches, the same will be used with P-CEDAS as well , which 

contains 490,000 data records (Qian et al. 2017). 
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3.3 P-CEDAS PERFORMANCE EVALUATION 

In addition to accelerating data clustering processing time, the developed algorithm will pass 

through an evaluation test to ensure the quality of the output’s accuracy and purity of the 

clustering of the data stream. Accuracy and purity are an evaluation method that uses quality 

metrics classified in internal and external indices. Moreover, speedup scalability over scaling the 

number of cores will be justified. These are used in order to guarantee the proposed P-CEDAS 

algorithm has a better performance compared with the benchmark CEDAS. 

3.3.1 Speedup Scalability 

The amount of performance increment or speedup is the ratio of time of sequential algorithm to 

the time of the parallel algorithm. Below is the simple formula to estimate the maximum speedup 

of a parallel algorithm 

This research focuses on the development of new techniques for  

Speedup =  
𝑇𝑠𝑒𝑟𝑖𝑎𝑙

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
 

…(3.1) 

‘Tserial’ is presence the time taken without parallelism, and ‘Tparallel’ is the computed time 

with parallelism. speedup depends on problem size as well, which is affected by the size and type 

of memory from the first place. There are other factors that affect speed up negatively such as 

inherently sequential part of the algorithm (Buell 2011). 

3.3.2 Purity and Accuracy 

According to (Hyde et al. 2017), the measurements of accuracy and purity of CEDAS clustering 

have improved to reach 100% in some parts of the clustering period and to above 90% in general. 

In this research, the mean measurement of both will be calculated, to guarantee P-CEDAS output 

quality was not affected by the updates that applied to accelerate the clustering process. To 

determine the percentage of correct cluster samples number have been assigned to the dominant 

class, the equations below of both accuracy and purity measurements are used.  

𝑚𝑒𝑎𝑛 𝑝𝑢𝑟𝑖𝑡𝑦 =
∑

|𝐶𝑖
𝑑|

|𝐶𝑖|
𝑁
𝑖=1

𝑁
  ×   100% 

…(3.2) 

𝑚𝑒𝑎𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ |𝐶𝑖

𝑑|𝑁
𝑖=1

∑ |𝐶𝑖|𝑁
𝑖=1

 ×   100% 
…(3.3) 

where the variable ‘Ci’ depicts the number of samples in a cluster; ‘Cd’ represents the number of 

assigned samples that added up to the main class, and 'N' refers to the number of clusters. 
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4 RESULT AND DISCUSSION 

To asses the alternative P-CEDAS algorithm in different environments. using the high-

performance language MATLAB, we run the algorithms illustrated in chapter 3. P-CEDAS 

parameters are set based on dataset type.With Spiral and DS2_Class; Decay = 500; radius = 0.05; 

Threshold =4; Sample speed set to one of {5,10,15,20,25} each experiment. And with 

10%KDD99ÇUP: Decay = 1,000; radius = 0.05; Threshold =4; Sample speed set to one of 

{100,125,150,175,200} in each experiment.  

Both artificial and real data are being streamed as a data flow. The dataset streamed 

sequentially on CEDAS, as the clustering process runs in a serial manner. While in P-CEDAS 

each dataset was partitioned before being streamed to fit the number of workers that P-CEDAS is 

running, thus, enabling data stream clustering parallelism. 

The execution period is timed by ‘MATLAB tic/toc’ with CEDAS, while P-CEDAS uses 

‘ParTicToc’ for timing Parfor loop. As the experiment has employed the different values of 

Sample speeds, each of which we mesured the processing time average of performing 'CEDAS' 

and 'P-CEDAS' ten times using the same Sample speed value with the streamed dataset. 

This experiments aims to verify the average of purity, accuracy and processing time. Real or 

artificial datasets are used to assess the proposed algorithm. 

4.1 Spiral Dataset 

 

Figure 4.1 of Spiral dataset illustrates the 

processing time in seconds of P-CEDAS 

and CEDAS. When the sample speed 

various from 5 to 25 point per second 

(pps), it can be seen that the processing 

time of the P-CEDAS algorithm values 

less than 0.8203s, while CEDAS 

algorithm processing time is relatively 

high above 3.8182s. Looking from an 

overall perspective it is readily apparent 

that P-CEDAS algorithm outperforms 

CEDAS algorithm regarding the 

processing time due to the decrement in 

CPU overhead by partitioning the 

process into four smaller processes and 

executing them in parallel using 

Parfor(PCT) of four workers. 

 

Figure 4.1 Spiral processing 

time (CEDAS, P-CEDAS) 
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Spiral purity and Acuracy of (CEDAS, P-CEDAS) arbitrary shape clusters 

Figure 4.2 illustrates the average purity test of resulted clusters of P-CEDAS and CEDAS using 

the Spiral dataset. As it shows below P-CEDAS average purity ranges between 87.2% and 86.6% 

not affected by the number of sample speeds. While CEADS records an average range between 

84.84% and 87.5% inversely proportional to the number of sample speeds. Overall, P-CEDASs' 

average purity has been maintained as CEDAS's, the reason is that a new CM can capture the 

characteristics of a mixed data object, and is accurately distributed, is introduced. This feature 

makes the cluster purity of the P-CEDAS algorithm increasingly accurate. 

Figure 4.3 illustrates the average accuracy. On the Spiral dataset as shown below P-CEDAS reach 

an average accuracy above 77.5% on various numbers of sample speed. On the other side, as the 

number of sample speeds increases, CEDAS fell slightly from 81.84% in 5 pps sample speed to 

79.14% in 25 pps sample speed. Unlike CEDAS, P-CEDAS shows relative accuracy decay but 

maintained during the increases of numbers of sample speed, because, the data points cannot be 

treated as noise points, and this has maintained cluster accuracy. 

4.2 DS2_Class Dataset 

Figure 4.4 shows the result of DS2_Class dataset, illustrates the processing time in seconds of P-

CEDAS and CEDAS. When the sample speed various from 5 to 25 pps, it can be seen that the 

processing time period of the P-CEDAS less than 0.7568s, while CEDAS algorithm processing 

time period is very high above than 6.3568s. Moreover, P-CEDAS gives faster results as it 

responds positively to the increment of the number of samples. Looking from an overall 

perspective it is readily apparent that P-CEDAS algorithm outperforms the CEDAS algorithm 

regarding the processing time due to the decrement in CPU overhead by distributing the process 

into four smaller processes and executing them in parallel using Parfor (PCT) of four workers. 

 

Figure 4.2 Spiral purity                                                    Figure 4.3 Spiral Accuracy 
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Figure 4.5 illustrates CEDAS and P-

CEDAS clusters' purity average on 

the DS2_Class dataset using sample 

speeds various between 5 to 25 pps. 

Looking at the chart there is a slight 

upward trend in P-CEDAS purity 

average from 77.78% in 5 until 

81.2% in 15 sample speed. 

Additionally, the bar chart shows a 

relative increase in purity average of 

CEDAS instable proportional to the 

sample speed increment from 77.3% 

in 5 sample speed to reach the 

highest average 81.75% when 

sample speed number is 15. Both, 

CEDAS and P-CEDAS give a slight 

fell down in 20 and 25 sample speed 

numbers but CEDAS maintained an 

average purity better by 81.46% 

when sample speed is 25, unlike P-CEDAS which fell down till 77.3% again. 

Figure 4.5 illustrates CEDAS and P-CEDAS clusters' purity average on the DS2_Class dataset 

using sample speeds various between 5 to 25 pps. Looking at the chart there is a slight upward 

trend in P-CEDAS purity average from 77.78% in 5 until 81.2% in 15 sample speed. 

Additionally, the bar chart shows a relative increase in purity average of CEDAS instable 

proportional to the sample speed increment from 77.3% in 5 sample speed to reach the highest 

average 81.75% when sample speed number is 15. Both, CEDAS and P-CEDAS give a slight fell 

down in 20 and 25 sample speed numbers but CEDAS maintained an average purity better by 

81.46% when sample speed is 25, unlike P-CEDAS which fell down till 77.3% again. 

Overall, Although it seems P-CEDAS data partitioning might result in some clustering 

efficiency loss, P-CEDASs' purity average overperformed CEDAS's three times, and that because 

of a new CM that can capture the characteristics of a mixed data object, and is accurately 

distributed, is introduced. This feature makes the cluster purity of the P-CEDAS algorithm 

sometimes accurate.  

 
Figure 4.5 DS2_Class Purity………………. Figure 4.6 Ds2_Class Accuracy 

DS2_Class purity and Accuracy of (CEDAS, P-CEDAS) arbitrary shape clusters 
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Figure 4.4 DS2_Class processing time 
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Figure 4.6 illustrates the average accuracy. On the S2_Class dataset as shown below P-CEDAS 

and CEDAS are being asses during a various of 5 pps until 25 pps of sample speeds. 

It's obvious in the charts below, P_CEDAS reaches an accuracy average above 77.5% and below 

81.2% on various numbers of sample speed pps. On the other side, as the number of sample speed 

increases, CEDAS upward trends slightly from 83.84% in 5 sample speed pps to 86.14% in 25 

sample speed. P-CEDAS shows relative accuracy improvement as the sample speed number is 

increased because, the data points cannot be treated as noise points, and this has improved cluster 

accuracy. Generally, P-CEDAS shows relative accuracy decrement as data is too partitioned into 

small sets and that causes efficiency to lose. 

4.3 KDD99ÇUP Dataset 

Figure 4.7 showing the 10%of the KDD99ÇUP dataset below illustrates the processing time in 

seconds of P-CEDAS and CEDAS. When the sample speed various from 100 to 200 pps. 

CEDAS, the processing time period increases dramatically from 2,457s in 100 sample speed to 

5,298s in 200 sample speed, a high sample speed number means more samples carried per 

second. This means increase in the period of real-time processing CEDAS due to the limit in CPU 

memory bandwidth. However, P-CEDAS shows stable processing time, less than the 1,600s 

during the changeable sample speeds in the experiment and that because P-CEDAS uses an 

appropriate data-parallel model helps to decrease the memory bandwidth limitation by resulting 

more work done through 4 

workers at the same time. 

To sum-up, the 

Parallel CEDAS overcome 

sequential CEDAS, which 

suffers from additional 

overhead as far as the number 

of sample speed becomes 

greater. However, P-CEDAS 

does not affected by the 

changeable number of sample 

speed as it did with the 

synthetic data sets due to the 

high dimensions found in 

KDD99ÇUP. 

 

Figure 4.8 illustrates CEDAS and P-CEDAS clusters' purity average on the 10%KDD99ÇUP 

dataset using various numbers of sample speed. Looking at the chart although P-CEDAS average 

purity increases proportionally from 87.44% in 100 sample speed pps to 97.57% in 175 samples 

speed pps, there is a slight downward trend in P_CEDAS average purity 93.0% when the sample 

speed number is 200.While CEDAS purity average increases proportionally from 9.29% in 100 

sample speed to above 97%  in 200 sample speed. We conclude that, P-CEDAS reaches a total 

purity percentage of 94.6 overperforming CEDAS average 92.5% purity, due to the feature that 

 

Figure 4.7 KDD99ÇUP processing time 
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makes cluster purity more accurate. Because of a new P-CEDAS CM that can capture the 

characteristics of a mixed data object and is accurately distributed. 

 

Figure 4.9 illustrates CEDAS and P-CEDAS clusters' average accuracy on the 10%KDD99ÇUP 

dataset using various numbers of sample speed. As shown in the chart P-CEDAS average purity 

range between 79.77% in 100 sample speed pps to 95.74% in 175 samples speed pps, there is a 

slight downward trend in P_CEDAS purity average 87.6% when the sample speed number is 200. 

While CEDAS purity averages show an unstable range of 61.58% in 100 sample speed to 58.9%  

in 200 sample speed.  

Overall, P-CEDAS reaches a remarkable total purity percentage of 90% overperforming 

CEDAS with an average of 59.3% accuracy, P-CEDAS shows relative accuracy improvement 

because, the data points cannot be treated as noise points, and this has improved cluster accuracy. 

 

4.4 SPEED UP AND SCALABILITY EVALUATION OF P-CEDAS EXECUTION TIME 

The following experiment has been intended to examine P-CEDAS speedups scalability. The idea 

is performing P-CEDAS on an ascending number of available cores and measuring the gained 

speedup achieved. 

 
Figure 4.8 KDD99ÇUP-Purity             Figure 4.9 KDD99ÇUP-Accuracy 

KDD99ÇUP- Purity and Accuracy average of (CEDAS, P-CEDAS) arbitrary shape clusters 
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By involving more cores the number of threads increasing as well, which means speed up 

supposed to keep up, and that would prove the scalability of P-CEDAS, otherwise, if the 

algorithm fails to keep up would means it's not scalable enough. The following table provides 

speedups of P-CEDAS. 

Where N is the number of workers/cores and S is the computed speed up via the equation 

above. From the speedup’s escalation gotten we can claim that P-CEDAS is scalable and speedup 

increase as more worker/cores are involved. 

The graph below shows the speed up at which P-CEDAS gains more acceleration over 4 

workers from 1 to 4. The graph shows P-CEDAS processing time reach 0.9442s on one core and 

2.6401s on four cores. Overall, there is adoption on the number of workers/cores involves more 

computational threads that cooperate on carrying processing overhead. Thus, shows a typical 

success of speedup P-CEDAS as more cores involved in the process result in speedup boost up. 

 

5 CONCLUSION 

Many conventional data mining algorithms including data stream clustering algorithms are 

suffering from the limit memory bandwidth and increase in the period of real-time processing of 

the continuous data flow. The gap between big data growth and processors improvement causes 

CPUs to suffer more, indeed the capability of sequential processing is not the best solution to 

fully use the power of processors. The parallel processing approach is an extremely good solution 

when it comes to acceleration and full uses of processors' power. Therefore, this research aimed 

to use parallel processing to accelerate and evaluate an evolving data stream clustering algorithm 

CEDAS. In which it performs clustering process over multiple threads on multi-core CPU 

reducing processing period. The chosen algorithm has been studied and developed it to 

appropriate the new method of processing has done successfully and parallelization achieved 

through MATLAB (PCT) and Multi-core CPU. The data stream is mapped to a number of 

workers that run the clustering process in completely independent divisions, the parallel-for loop 

of MATLAB (PCT) carried out the small processes in each worker simultaneously, thus, 

processing time period and processor overhead have notably decreased.  

 

Figure 4.10 P-CEDAS speedups over 4 cores 

Table 4.1 P-CEDAS Speedups 
N 1 2 3 4 

S 0.9442 1.7363 2.4073 2.6401 
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Using synthetic and real data flows to examine the proposed parallel CEDAS validity, 

both sequential CEDAS and P-CEDAS performed on the same machines over various cases of 

sample speed values, to avoid false acceleration or less accurate evaluations. The result clusters 

are evaluated and compared with the serial version algorithm in terms of the quality purity and 

accuracy of clusters. The proposed algorithm P-CEDAS overcome CEDAS in the experiments 

and shows a remarkable speedup about 5 to 9 times faster using spiral, 11 to 14 times faster using 

DS2_Class, and 1.6 t0 3.5 times faster with KDDCUP99. Despite that, clusters' purity and 

accuracy have varied between 77.3% and 97.6% purity as well as 76.9% and 95.8% accuracy; 

various percentages illustrate the lowering and improvement in various cases of the experiment. 

Even though the objectives were achieved, the proposed algorithm has some limitations that 

are worthy to be mentioned. We observed that P-CEDAS speedup falls down when sample speed 

is small, especially with high dimensional data. P- CEDAS recorded a modest speedup on single-

core, which calls into question that the development was not good enough despite the speedup 

results on 4 cores. Although Parfor loop of MATLAB (PCT) is easy to use when comparing it 

with parallel programming languages, it has more limitations in control and conditions of use. 
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