
Query Performance in Database Operations

Abdulghafor Abbas

Faculty of Information Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

E-mail: whaleabbas@live.com

Kamsuriah Ahmad

Center for Software Technology and Management,

Faculty of Information Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

E-mail: kamsuriah@ukm.edu.my

Abstract - Database management systems have become

the most important process since millions and billions of data

transactions taking place every second. It comes as surprise

that database optimization and tuning has become the main

key research. If the database processes are not handled

properly, it will lead to a slow system and it might cause a lot of

errors and there is a possibility for the system to crash. Since

database main task is storing and accessing the data according

to the user needs through SQL operations, therefore there is a

need to optimize the database operations by reducing their

response times. There are many ways to optimize database

operations, but among those; database tuning seems the most

challenging area. There are many studies done on the

improvement of database tuning approach however they are

still suffer from a slow query processing time. Factors causing

slow processing time normally are due to small-shared pool

size and improper execution plans used during queries. This

study focused on improving database indexing to overcome

these two factors. A combination of clustered index, non-

clustered index and bitmap is proposed as a new approach in

query processing. These combinations of indexes have been

tested using complex and simple queries. The results of this

experiment are being compared with the result from the

existing indexing approaches when using the same datasets.

The result shows that these combinations are able to optimize

the database systems. The proposed solution able to provide a

database system that is fast in data retrieval and an improved

performance percentage of 10% to 20% depending on the

query, and the dataset used. Indirectly, this proposed solution

enables companies’ database systems to achieve its highest

potential with maximum performance.

Keywords: query processing, clustered index, non-clustered

index, DBMS, database optimization

I. INTRODUCTION

Database management system (DBMS) plays a crucial

role in the organizations. DBMS is a program that manages

the data inside the database and the structures that holds this

data [1]. The stored data are accessed and managed by query

language such as SQL. Optimizing the query processed

involves improving the speed thus reducing system response

time [2]. Systems with a good database management are

vital since company relies on an effective and efficient

system to operate their daily activities. Data analyst,

database designers and administrators work closely to

optimize the performance of the system through various

strategies. From a software company’s perspective, the lack

of optimization process in databases can cause unreasonable

costs to both clients and companies [3]. The way the

database is operated should be the focused in order to

improve the database performance [4]. There are many ways

to optimize the database operation: such as avoiding unused

tables, proper indexing usage, avoiding temporary tables

and coding loops, and many others. The interest of this

study is to tune the database structure and optimize the

architecture rather than focusing on improving the query

writing. The aim of database tuning is to maximize and to

improve the system resources. Even though most systems

are able to manage their resources but there is still room for

improvement in terms of their efficiency by customizing the

settings and configurations [5]. The configurations of query

processing are based on the steps stated in the execution

plans. The purpose of execution plan is to calculate the most

efficient way to execute the query. However, to improve

data retrieval process during query execution is to improve

the indexing method used in the query [6][7]. Therefore the

focus of this study is to improve the indexing method in the

query execution plan. Database users and administrators

shall manually examine and tune this plan to get better

performance.

During query execution, the type of indexing method

used is very important to improve the database operations.

The advantage of index is its ability to search data without

searching every single row in a database table during query

[5]. Therefore proper choice of indexing technique used in

the query execution plan is very important. There are a

number of indexing techniques exist, such as cluster index,

non-cluster index, bitmap index, and others. There are

researchers who embed these techniques in their query

improvement process. However, the existing applications of

these indexes are still faced problems in terms of the time

taken to process the query [8]. This study explores whether

the combination of cluster index, non-cluster index and

bitmap index in one process able to improve the time

processing during queries. Therefore, to explore the

possibility of these combinations in the query execution

plan, and to achieve the aim of the study, this paper is

organized as follows. In the following section is the

discussion of the index management in database operations.

Section III discusses different type of indexes exists in the

literature, Section IV reports the analysis of SQL query

processing in database systems. Section V explains on the

development of the proposed method to improve query

processing and in Section VI discusses on the evaluation of

the proposed approach through an experiment. The last

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-045

section states the conclusion of the paper and the future

works.

II. INDEX MANAGEMENT IN DATABASE

Indexing is a significant data structure in database. The

purpose of having an index in a database is to sort records

into multiple fields. When index is created on a field table,

another data structure is created that holds a pointer to the

record and the value of the field [5]. As an analogy, imagine

a user tries to search a word in a textbook using a search

function. Based on user request, the system will go directly

to the desired word in the textbook. The function of index in

a database is similar to the index function in a textbook.

Using an appropriate index to databases is the most

important aspect to optimize database operations. However,

by having an index on each field table, additional space will

be created on the disk since the indices are stored together in

a table. The database file can reach the size limits quickly if

within the same table there are many field are being indexed

[6].

Based on its important to improve the query response

time, there are many types of indexes used. There are seven

index types which are among the most popular used for

query improvement, such as: clustered index [9], non-

clustered index [5], hash index [11], bitmap and bitmap-join

index [12], partitioned index [13], domain index [14], and

function-based index [6]. Although these indexes boost the

performance of the database system, however, they have

some limitations. Thus, the motivation of this project is to

propose an improved indexing approach to help in reducing

the query processing time for the database systems. In the

following section, is the discussion on each type of index.

III. TYPES OF INDEXES

There are several type of indexes used in the existing

DBMS. Database indexes can be categorized into the

following types.

A. Clustered Index

A clustered index is an index that alters the way records

is organized in the table, as the result the data is being stored

in-order. Because of this organization one clustered index is

assigned to a table. Since clustered index used B-tree in its

structured, the leaf nodes stored the actual data while the

table is sorted based on its key values. Since the value of the

leaf nodes is unique, only one clustered index is assigned in

the database table. Because of its structure, clustered index

is able to speed up the retrieval process. But it only

applicable if the data is retrieved sequentially in the same

order or reverse order of the clustered index or the data is

selected based on its range of items [9]. There are studies

done in improving query processing using this type of index

such as [5][15][16]. This index scale well because it used B-

tree structure in its processing.

B. Non-clustered Index

Like clustered index, non-clustered index also used b-

tree as its structure. However the different is non-clustered

index separate the data and the index in two different places.

The leaf nodes stored the index rows, which points to the

location of the data. With this structure, it is possible to have

multiple non-clustered in a table. Studies done by

[5][16][17] embed this index in their works. This index is

very helpful in retrieving data quickly from database table.

C. Hash Index

Hash index is like a collection of buckets that organized

in an array. Each bucket has a pointer that points to a data

row. Studies done by [11][18][19] improved the query

processing using this type of index. However, this index

seems complex to be implemented by junior DBA.

D. Bitmap and Bitmap-Join Index

The bitmap indexes utilized in the queries is applied to

low or medium cardinality columns. Studies done by [12]

[20][21] explore the features provided by this index.

However, this type of index is good for low cardinality

columns (example gender field).

E. Partitioned Index

A partitioned index in Oracle 11g is basically an index

that breaks into numerous pieces. Studies done by [13] [22]

[23] explore the suitability of this index in their studies. It

allows quick and ease of access and efficient for smaller

data units.

F. Domain Index

This index is suitable for a particular domain, for

example spatial or picture handling or video file. Studies

done by [13] [24] [25] explore the suitability of this index in

their studies. It can only be used in some tables and requires

a lot of maintenance and various monitor size.

G. Function-based Index

A function-based index calculates the result of a

function that involves one or more columns and stores that

result in the index. Studies done by [6] [26] used this index

to query the web. It is a useful index and can help the DBA

in creating a fast database.

As discussed, there are advantages and disadvantages of

each index on database operations. The existing DBMS

normally used single index during query processing,

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-045

however this study tries to explore the possibility of

combining multiples indexes in order to improve the query

processing. The aim of this study is to improve the time

taken for query processing; therefore three steps are outline

as the methodology in this study. The details for each step

discussed in the following section.

i. Analyzing and understanding query processing steps

ii. Proposing an approach to improve query processing

iii. Evaluating the proposed approach

IV. ANALYZING QUERY PROCESSING

SQL (Structured Query Language) is a language used to

access and manipulate database contents. The performance

of the query is measured based on the time taken to process

the query. When a user post a SQL statement to the server

the required processing time for the server consist of the

following:

i. Application processing time: the time taken for the

application to process data from the previous response,

before sending the next request.

ii. SQL processing time: the time taken to process the

request and send back the results.

Since this study focuses on improving SQL processing

time, therefore there is a need to analyze the steps taken in

query processing. SQL is different from other programming

languages on the way the codes are being executed. Most

programming languages execute statement from top to

bottom. On the other hand, SQL defines the order in which

the clauses of a query are executed. Figure 1 explains the

order of SQL process.

Fig. 1 The order of SQL clauses [10]

As stated in the figure, the first clause that is processed

is the FROM clause, while the SELECT clause, which

appears first, is executed almost at the end of the query

processing. Normally, the database systems through query

execution plan will follow this order when process the query

[27]. The function of execution plan is to calculate the most

efficient way to execute the query. Query execution plan is a

sequence of steps used to access data in database. Database

users and administrators shall manually examine and tune

this plan to get better performance. This plan will guide the

system the way the SQL should be executed to improve the

query processing time. There are a number of steps or stages

the database systems do before the execution of SQL

statement. Figure 2 illustrates the stages of SQL processing.

Fig. 2 The stages in Query Processing [28]

When a SQL query is constructed by the user, this

query will be sent to the database system by the query

processor where the system parses and executes the SQL

query. An execution plan will be constructed where this plan

will identify the most efficient way to execute the query.

Three basic steps in query processing: i) Parsing and

translation, ii) Optimization, and iii) Evaluation [29].

i) Parsing and Translating SQL Query

At first, the query statement will undergo a process called

parsing. In this process, SQL statement will be divided into

a different data structures. This query is then translated into

relational algebra [30]. A parser will check the syntax,

semantics of the query and the shared pool. The shared pool

is like a buffer for SQL statements. It is used to store the

SQL statements so that the identical SQL statements do not

have to be parsed each time they're executed. This study

also looks into the possibility to improve the used of shared

pool during query since the size of the pool shall be adjusted

to accommodate the query processing.

ii) Optimizating SQL Query

During query, the users will state what data they are

looking for and the system will search the data in the

database. The searching algorithm will be identified by the

DBMS. For a given query there are many possible way to

search for the data or execution plans. Normally the system

will choose the plan with the lowest cost. The cost is

measured using statistical analysis from the database

catalog.

iii) Evaluating SQL Query

The query evaluation engine takes a query evaluation

plan, executes the plan and returns the answer to that query.

Upon analyzing these three steps in query processing,

this study found there are two factors to improve the query

processing, which are: i) the shared pool size and ii) the

execution plan. These factors will be considered in the

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-045

design of the proposed approach to improve query

processing. Since execution plan indicates and guides the

way the query should be executed, therefore in order to

improve query processing time, this study will improve the

execution plan by improving the used of shared pool size

and the indexing method. Below is the discussion on the

shared pool size and the execution plan in query processing

before these two factors are used and embedded in the

proposed approach.

A. Shared Pool Size

Shared Pool contains parsed SQL statements and

execution plans. With nonstop utilization of database

operations, after a timeframe the shared pool will be

divided. The pool is loaded with new and old parsed SQL

and execution plans. This will likewise prompt bigger

packages being matured out with new sections going into

shared pool. Henceforth access to such bigger packages will

set aside some effort to parse and make execution plan. This

may cause performance issues. To overcome this situation,

the user shall use a parameter called

SHARED_POOL_RESERVED_SIZE. This will provide

some extra space on the defined shared_pool_size. By

changing the shared pool size and reserve some extra space

in the pool, more execution plans can be stored. However,

the user needs to define this parameter manually during

query processing.

B. Execution Plans

Execution plans are often reviewed by the database

admins when reviewing query performance [27]. The

execution plan indicates what tuning should be done to

improve the query processing. This plan demonstrates the

query execution; identify the most expensive query, and the

performance of the index used during the query processing.

The operator that contributes to low query performance will

also be identified. The scan operators that are used to scan

the whole table are able to identify a missing index, the

index that is wrongly utilized, or the query contains no

filtering condition. Since database users and administrators

shall manually examine and tune the execution plan to get

better performance, therefore this study will tune the

execution plan to get better query performance.

Therefore these two factors (shared pool size and the

execution plan) will be enhanced in the proposed solution in

order to improve the performance of the query. The next

section will discuss the proposed improvement approach.

V. THE PROPOSED INDEXING APPROACH

The aim of this study is to reduce query processing time

by improving the execution plans and the shared pool size.

This improvement will be embeded in the query processing.

In Oracle query processing, clustered and non-clustered

index are used during the process but in this study, three

combination of indexes are used, which are clustered, non-

clustered and bitmap index. These three combinations of

indexes are used in the query execution plan and this plan is

re-structured to include the seven steps as stated in Table 1

below.
TABLE 1 The proposed indexing steps

Step 1 : Deletes all current indexes.

Step 2 : find a suitable column to apply clustered index

Step 3 : find a column that has low cardinality values.

Step 4 : find a common column to apply non-clustered

index

Step 5 : create clustered index on the column in step 2.

Step 6 : create bitmap index on the column that is

mentioned in step 3.

Step 7 : create a non-clustered index on a column that is

critical

The combination of three indexing techniques (clustered,

non-clustered and bitmap index) hopefully will improve the

query execution plan thus reduce the processing time. The

explanations of these seven steps are as follows:

Step one is to delete all the current indexes in the

datasets, the reason for doing this is to fix performance

problem that caused by the existing index and to avoid the

new index overlap with the existing ones. The second step is

to find a column where a clustered index could be applied.

The clustered index could not be applied on any column; it

should be applied only on columns that have unique values

and does not contain null values. If this column did not exist

then a new column will be created, this procedure is

necessary to help restructure the database physically. Step

three is to search a column with low cardinality values. Low

cardinality means column with a small pool of data, such as

gender column (M/F), payroll types or others. The reason to

search this kind of column is to apply bitmap index in this

column. Bitmap index could not be applied on top of

column with high cardinality since this will downgrade the

performance of the database. Step four is to find a common

column where many search operations are being applied to

this common column. The reason for doing this is to apply

non-clustered index into this column. A column that has

both clustered and non-clustered index applied to it will help

reduce the query processing time. Step five is to create

clustered index in the column found in step two. While step

six is to create bitmap index into a column that found in step

three. Step seven is to create a non-clustered index into a

column that is critical. These seven steps will be embedded

in the query execution plan.

VI. EVALUATING THE PROPOSED APPROACH

The proposed approach will be developed using Oracle

platform (SQL DEVELOPER). The seven steps as discussed

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-045

in the previous section will be embedded in the query

execution plan and the size of the shared pool will be re-size

to reserve some extra space in the pool. To evaluate the

reliability of the proposed approach, three tests are being

conducted. The intention of these three tests is to analyze

the improvement of query execution when the three indexes

are applied. The parameter for evaluation is the number of

rows accessed by the database systems to produce the

output, where this parameter is called cost. The least number

of table rows being accessed by the database system or low

cost indicates the index for that particular approach is better.

The first test is to analyze the query processing time when

no index is being applied in the execution plan. This test is

to evaluate the first step in the approach. Payroll dataset [32]

which consists of 1203 rows of records with 11 columns is

used in this test. A simple query as stated below is used:

Select first_name,salary,job_id from employees

Where job_id= 'SA_MAN';

Query execution plan as stated in Fig. 3 is executed. As

stated in the figure the number of cost is three, which

indicates that the number of rows being accessed by the

systems to produce the result is three rows.

Fig. 3 Execution plan without index

The second test is to analyze the query processing

time when a bitmap index is being applied in the execution

plan while the same query is being used. Fig. 4 states the

result of this execution.

Fig. 4. Execution plan with bitmap index

As stated in the Fig.4, the cost of this query is reduced

to two. This indicates that when bitmap index is applied in

the table field this will improve the searching process. Third

test is then conducted, which is to analyze the query

processing time when the combination of bitmap index and

the clustered index is being applied in the execution plan

while using the same query.

Fig. 5. Execution plan with the combination of bitmap and clustered index

As indicated in the Fig.5 the cost of the query is

reduced to one. This indicates that when two indexes are

used during query, it will reduce the cost and hence reduce

the query processing times. And it is believed that if large

datasets are used, or the combinations of three indexes are

used then the result will be improved as well.

The next experiment is to compare the performance of

the proposed approach with the existing approaches. Three

existing approaches are used in this experiment [5][12][17],

each of them used single index in query processing. These

existing approaches will be developed based on the type of

index used in each approach. Two datasets will be used for

this experiment which is payroll [32] and Human Resource

[33]. The existing approaches and the proposed approach

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-045

will be executed using two queries, one for each dataset.

The output produced by all the approaches will be compared

to see their significance. Fig. 6 is the query used in this

experiment.

Fig. 6. Complex query used to access HR datasets

The query used on payroll dataset is as follows:

SELECT A.employee_name AS empName1,

B.employee_name AS empName2, A.City

FROM payroll A, payroll B

WHERE A.employee_name <> B.employee_name

AND A.City = B.City

ORDER BY A.City;

After applying these two queries on each of the approach the

results are indicated as below:

TABLE 2 The results using two datasets

Reference Technique used Query Cost

using

HR dataset

Query Cost

using Payroll

dataset

[5] clustered index 270 94

[12] bitmap index 273 94

[17] non-clustered

index

272 94

the

proposed

approach

combination of

clustered index,

non-clustered

index and bitmap

index

267 87

As stated in Table 2 the results produced by the

proposed solution are the best and the cheapest cost among

all other approaches when the two queries are applied. This

proves the efficiency of the proposed approach with an

improvement percentage of 20%. The existing approaches

that used in this experiment only apply single index. The

authors of [5] used clustered index only in the approach.

Even though this approach is able to produce a good result

when tested using the two datasets but the results are not the

best, hence the approach needs some improvement. The

authors of [12] used bitmap index in their approach and able

to produce a good result. However it increases the time

taken to process the query, since the number of cost to

access the table is the highest among all when using HR

dataset. Non-clustered index is used by the author of [17] in

his work. This approach is tested using both datasets in this

experiment. As the result shown in Table 3, however this

approach failed to produce the best result. The data in the

table is not sorted properly in the database hence the number

of search has increased. However, this study proved that if

multiple indexes are applied in the query processing it is

able to provide a better performance by reducing the time

taken during query.

VII. CONCLUSION

This study shows that the combinations of indexing

approaches such as clustered, non-clustered and bitmap

index are able to achieve better performance in terms of

reducing query processing time. The improved indexing

approach shall be implemented on any dataset. For further

improvements in the experiment, a different platform shall

be chosen other than SQL developer for example: MySQL

or DB2. This will open more indexing options that can be

supported through SQL code. Other exploration exercise in

improving the query processing time is to look on the

possibility of combining partitioned indexes with non-

clustered index. This work is very important to provide a

better approach in improving query processing time.

ACKNOWLEDGMENT

This study is supported and funded by the Faculty of

Information Science and Technology, Universiti

Kebangsaan Malaysia through the university grant (GGP-

2019-024).

REFERENCES

[1] C.Coronel and S. Morris, Database Systems: Design, Implementation,

and Management, 13th Edition, Cengage Learning, 2018.

[2] H.Albadri and R.Sulaiman, “A Classification Method For Identifying

Confidential Data To Enhance Efficiency Of Query Processing Over

Cloud”, Journal of Theoretical And Applied Information Technology,

vol.93. no.2, 2016, pp. 215-219

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-045

[3] A.Boicea, F.Rădulescu, C.Truică and L.Urse, “Improving Query

Performance in Distributed Database”, Journal of Control

Engineering and Applied Informatics 18(2), 2016, pp. 57-64

[4] Z.Ali Raheem, A.H Mohd Aman, S.Islam, A.H.Abdalla and

A.Razzaque, “Performance Analysis for Cloud Query Encryption”,

International Conference on Sustainable Technologies for Industry

4.0 (STI), 2019, pp. 24-25.

[5] C. Cioloca and M. Georgescu, M. “Increasing Database Performance

using Indexes”, Database Systems Journal, vol. 2(2), 2011, pp. 13-22.

[6] M.K Gupta, “Comparative Study of Indexing Techniques In DBMS”,

Conference: Business Intelligence and Data Warehousing, p. 6, 2015

[7] Thamer Salah and Sabrina Tiun, Focused Crawling Of Online

Business Web Pages Using Latent Semantic Indexing Approach,

Journal of Engineering and Applied Sciences, vol. 11, no. 15, 2016,

pp.9229-9234.

[8] J.M. Medina, C.D Barranco and O.Pons, “Indexing techniques to

improve the performance of necessity-based fuzzy queries using

classical indexing of RDBMS”, Fuzzy Sets and Systems, Vol.351,

2018,vpp. 90–107.

 [9] R.T. Hashim, “A Comparative Study of Indexing using Oracle and

MS-SQL Server for Relational Database Management Systems”,

International Journal of Computer Science and Mobile Computing,

Vol.7 Issue.12, 2018, pp. 341-350

[10] J. Mor, I.Kashyap and R.K. Rathy, “Analysis of Query Optimization

Techniques in Databases”, International Journal of Computer

Applications 47(15), 2012, pp.6-12.

[11] C.Y.Chiu and S. Markchit, “Effective and efficient indexing in cross-

modal hashing-based datasets”, Signal Processing: Image

Communication, Vol. 80, 2019.

[12] L. Toumi, A.MoussaouI and A.Ugur, “A linear programming

approach for bitmap join indexes selection in data warehouses”, 6th

International Conference on Ambient Systems, Networks and

Technologies, 2015

[13] N. Khushairi, N.A. Emran, and M.M.M Yusof, “Database

Performance Tuning Methods for Manufacturing Execution System”,

World Applied Sciences Journal 30(30), 2014.

[14] P. H. Oliveira et al., "Employing Domain Indexes to Efficiently

Query Medical Data From Multiple Repositories," in IEEE Journal of

Biomedical and Health Informatics, vol. 23, no. 6, 2019, pp. 2220-

2229.

[15] Oktavia, T. and Sujarwo, S. “Evaluation of Sub Query Performance in

SQL Server”, edited by Gaol, F.L.EPJ Web of Conferences, Vol. 68,

2014, pp. 33.

[16] C. Qi, "On index-based query in SQL Server database," 2016 35th

Chinese Control Conference (CCC), Proceedings of the 35th Chinese

Control Conference. 2016, pp. 9519-9523.

[17] K Sirohi, A. “Optimization of Dynamically Generated SQL Queries

for Tiny-Huge, Huge-Tiny Problem”, International Journal of

Database Management Systems, Vol. 5 No. 1, 2013, pp. 53–68.

[18] D. Hao and L. Sun, "EIHJoin: An hash join with building index in

bucket in column store data warehouse," IET International

Conference on Smart and Sustainable City 2013 (ICSSC 2013), 2013,

pp. 268-271

[19] F. S. Patel and D. Kasat, "Hashing based indexing techniques for

content based image retrieval: A survey”, International Conference on

Innovative Mechanisms for Industry Applications (ICIMIA), 2017,

pp. 279-283.

[20] E.A.A. Abdelouarit, M. El Merouanib and A. Medouri, “The bitmap

index advantages on the data warehouses”, American Academic &

Scholarly Research Journal, Vol. 6, No. 4, 2014, pp. 376-382

[21] F. Chen, and M. Li, “Efficient Algorithm Based on Itemset-lattice and

Bitmap Index for Finding Frequent Itemsets”, Systems Engineering -

Theory & Practice, Vol. 28 No. 2, 2008, pp. 26–34.

[22] E. Wu and S. Madden, "Partitioning techniques for fine-grained

indexing," 2011 IEEE 27th International Conference on Data

Engineering, Hannover, 2011, pp. 1127-1138.

[23]K. Saleh Maabreh, "Optimizing Database Query Performance Using

Table Partitioning Techniques," 2018 International Arab Conference

on Information Technology (ACIT), 2018, pp. 1-4

[24] T. Truong and T. Risch, “Transparent inclusion, utilization, and

validation of main-memory domain indexes”, 27th International

Conference on Scientific and Statistical Database Management

(SSDBM), 2015.

[25] R. Shandilya, S. Sharma and S. Qamar, “A Domain Specific Indexing

Technique for Hidden Web Documents”, Communications in

Information Science and Management Engineering, Vol.2 No.2, 2012

pp.37-41

[26] H.Lee and W. Lee, "Query Optimization for Web BBS by Analytic

Function and Function-Based Index in Oracle DBMS," Sixth

International Conference on Advanced Language Processing and Web

Information Technology (ALPIT 2007), 2007, pp. 606-611.

[27] S.M.V. Jadhav, “An analysis of execution plans in query

optimization”, International Conference on Communication,

Information & Computing Technology, 2012.

[28] Database SQL Tuning Guide,

https://docs.oracle.com/database/121/TGSQL.

[29] G. Fritchey, “SQL Query Performance Tuning”, in book: SQL Server

Query Performance Tuning, 2014

[30] V.Bhagat and A. Gopal, “Roll of Relational Algebra and Query

Optimizer in Different Types of DBMS”, International Journal of

Computer Science and Mobile Computing Vol. 5, Issue. 3, 2016, pp.

6 – 16

[31] M.A. Mohd Yunus, M. Z. Brohan, N. Mohd Nawi, E. S. Mat Surin,

N.A. Md Najib and C.W.Liang, “Review of SQL Injection: Problems

and Prevention”, International Journal on Informatics Visualization

Vol 2, No 3 – 2, 2018, pp.215-219

[32] https://opendata.socrata.com/Government/Payroll-Report-End-Date-

2-20-2019/2dps-ayzy (accessed 15 November 2019).

 [33] https://github.com/Oracle/db-sample-schemas (accessed 16

November 2019).

Cop
yri

gh
t@

FTSM

PS-FTSM-2020-045

