Page 103 - The-5th-MCAIT2021-eProceeding
P. 103

References:
        Cui, Z., Ke, R., Pu, Z., & Wang, Y.  (2018). Deep bidirectional and unidirectional LSTM recurrent neural
        network for network-wide traffic speed prediction. arXiv preprint arXiv:1801.02143.
        George  Moody,    Roger  Mark,  (2005).    MIT-BIH  Arrhythmia  Database.  Retrived  from
        https://www.physionet.org/content/mitdb/1.0.0/
        Hassan, S. U., Zahid, M. S. M., & Husain, K. (2020, October). Performance comparison of CNN and LSTM
        algorithms  for  arrhythmia  classification.  In  2020  International  Conference  on  Computational  Intelligence
        (ICCI) (pp. 223-228). IEEE.
        He, R., Liu, Y., Wang, K., Zhao, N., Yuan, Y., Li, Q., & Zhang, H. (2019). Automatic cardiac arrhythmia
        classification using combination of deep residual network and bidirectional LSTM. IEEE Access, 7, 102119-
        102135.
        Hou,  B.,  Yang,  J.,  Wang,  P.,  &  Yan,  R.  (2019).  LSTM-based  auto-encoder  model  for  ECG  arrhythmias
        classification. IEEE Transactions on Instrumentation and Measurement, 69(4), 1232-1240.
        Husain, K., Mohd Zahid, M. S., Ul Hassan, S., Hasbullah, S., & Mandala, S. (2021). Advances of ECG Sensors
        from Hardware, Software and Format Interoperability Perspectives. Electronics, 10(2), 105.
        Lay-Ekuakille, A., Vergallo, P., Griffo, G., Conversano, F., Casciaro, S., Urooj, S., ... & Trabacca, A. (2013).
        Entropy index in quantitative EEG measurement for diagnosis accuracy. IEEE Transactions on Instrumentation
        and Measurement, 63(6), 1440-1450.
        Moody, G. B., & Mark, R. G. (2001). The impact of the MIT-BIH arrhythmia database. IEEE Engineering in
        Medicine and Biology Magazine, 20(3), 45-50.
        Mukhopadhyay, S. K., Mitra, S., & Mitra, M. (2012). An ECG signal compression technique using ASCII
        character encoding. Measurement, 45(6), 1651-1660.
        Oh,  S.  L.,  Ng,  E.  Y.,  San  Tan,  R.,  &  Acharya,  U.  R.  (2018).  Automated  diagnosis  of  arrhythmia  using
        combination  of  CNN  and  LSTM  techniques  with  variable  length  heart  beats.  Computers  in  biology  and
        medicine, 102, 278-287.
        Picon, A., Irusta, U., Álvarez-Gila, A., Aramendi, E., Alonso-Atienza, F., Figuera, C., ... & Eftestøl, T. (2019).
        Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia.
        PloS one, 14(5), e0216756.
        Sharma, A., Garg, N., Patidar, S., San Tan, R., & Acharya, U. R. (2020). Automated pre-screening of arrhythmia
        using hybrid combination of Fourier–Bessel expansion and LSTM. Computers in Biology and Medicine, 120,
        103753.
         Xu, X., Jeong, S., & Li, J. (2020). Interpretation of electrocardiogram (ECG) rhythm by combined CNN and
        BiLSTM. IEEE Access, 8, 125380-125388.
        Yildirim, Ö. (2018). A novel wavelet sequence based on deep bidirectional LSTM network model for ECG
        signal classification. Computers in biology and medicine, 96, 189-202.

























        E- Proceedings of The 5th International Multi-Conference on Artificial Intelligence Technology (MCAIT 2021)   [90]
        Artificial Intelligence in the 4th Industrial Revolution
   98   99   100   101   102   103   104   105   106   107   108