Page 103 - The-5th-MCAIT2021-eProceeding
P. 103
References:
Cui, Z., Ke, R., Pu, Z., & Wang, Y. (2018). Deep bidirectional and unidirectional LSTM recurrent neural
network for network-wide traffic speed prediction. arXiv preprint arXiv:1801.02143.
George Moody, Roger Mark, (2005). MIT-BIH Arrhythmia Database. Retrived from
https://www.physionet.org/content/mitdb/1.0.0/
Hassan, S. U., Zahid, M. S. M., & Husain, K. (2020, October). Performance comparison of CNN and LSTM
algorithms for arrhythmia classification. In 2020 International Conference on Computational Intelligence
(ICCI) (pp. 223-228). IEEE.
He, R., Liu, Y., Wang, K., Zhao, N., Yuan, Y., Li, Q., & Zhang, H. (2019). Automatic cardiac arrhythmia
classification using combination of deep residual network and bidirectional LSTM. IEEE Access, 7, 102119-
102135.
Hou, B., Yang, J., Wang, P., & Yan, R. (2019). LSTM-based auto-encoder model for ECG arrhythmias
classification. IEEE Transactions on Instrumentation and Measurement, 69(4), 1232-1240.
Husain, K., Mohd Zahid, M. S., Ul Hassan, S., Hasbullah, S., & Mandala, S. (2021). Advances of ECG Sensors
from Hardware, Software and Format Interoperability Perspectives. Electronics, 10(2), 105.
Lay-Ekuakille, A., Vergallo, P., Griffo, G., Conversano, F., Casciaro, S., Urooj, S., ... & Trabacca, A. (2013).
Entropy index in quantitative EEG measurement for diagnosis accuracy. IEEE Transactions on Instrumentation
and Measurement, 63(6), 1440-1450.
Moody, G. B., & Mark, R. G. (2001). The impact of the MIT-BIH arrhythmia database. IEEE Engineering in
Medicine and Biology Magazine, 20(3), 45-50.
Mukhopadhyay, S. K., Mitra, S., & Mitra, M. (2012). An ECG signal compression technique using ASCII
character encoding. Measurement, 45(6), 1651-1660.
Oh, S. L., Ng, E. Y., San Tan, R., & Acharya, U. R. (2018). Automated diagnosis of arrhythmia using
combination of CNN and LSTM techniques with variable length heart beats. Computers in biology and
medicine, 102, 278-287.
Picon, A., Irusta, U., Álvarez-Gila, A., Aramendi, E., Alonso-Atienza, F., Figuera, C., ... & Eftestøl, T. (2019).
Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia.
PloS one, 14(5), e0216756.
Sharma, A., Garg, N., Patidar, S., San Tan, R., & Acharya, U. R. (2020). Automated pre-screening of arrhythmia
using hybrid combination of Fourier–Bessel expansion and LSTM. Computers in Biology and Medicine, 120,
103753.
Xu, X., Jeong, S., & Li, J. (2020). Interpretation of electrocardiogram (ECG) rhythm by combined CNN and
BiLSTM. IEEE Access, 8, 125380-125388.
Yildirim, Ö. (2018). A novel wavelet sequence based on deep bidirectional LSTM network model for ECG
signal classification. Computers in biology and medicine, 96, 189-202.
E- Proceedings of The 5th International Multi-Conference on Artificial Intelligence Technology (MCAIT 2021) [90]
Artificial Intelligence in the 4th Industrial Revolution