Page 208 - The-5th-MCAIT2021-eProceeding
P. 208

incorporation from a space with a single dimension per term to a continuous vector space with a significantly
        lower dimension (Diaz et al.,2016). The embedding models are normally trained in a broad corpus based on
        term proximity. For instance, the goal of the Word2Vec model is to predict the next word(s), i.e., the context
        window around the target word. This course aims to capture semantic and syntactic similarity between terms,
        since similar words often share similar contexts. The primary objective of many IR approaches is to model
        relevance  (Saracevic,2016;  Lavrenko  &  Croft,2017).  In  conclusion,  the  WE  approaches  seem  to  be  more
        promising way for AQE than the conventional approaches.


        References

        Abbache, A., Meziane, F., Belalem, G., & Belkredim, F. Z. (2018). Arabic query expansion using wordnet and
        association rules. In Information retrieval and management: Concepts, methodologies, tools, and applications
        (pp. 1239-1254). IGI Global.
        Al-Chalabi, H., Ray, S., & Shaalan, K. (2015, April). Semantic based query expansion for Arabic question
        answering systems. In 2015 First International Conference on Arabic Computational Linguistics (ACLing) (pp.
        127-132). IEEE.
        ALMasri,  M.,  Berrut,  C.,  &  Chevallet,  J.  P.  (2016,  March).  A  comparison  of  deep  learning  based  query
        expansion with pseudo-relevance feedback and mutual information. In European conference on information
        retrieval (pp. 709-715). Springer, Cham.
        Atwan, J., Mohd, M., Rashaideh, H., & Kanaan, G. (2016). Semantically enhanced pseudo relevance feedback
        for arabic information retrieval. Journal of Information Science, 42(2), 246-260.
        Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval (Vol. 463). New York: ACM press.
        Carpineto, C., & Romano, G. (2012). A survey of automatic query expansion in information retrieval. Acm
        Computing Surveys (CSUR), 44(1), 1-50.
        Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language
        processing (almost) from scratch. Journal of machine learning research, 12(ARTICLE), 2493-2537.
        Croft, W. B., & Harper, D. J. (1979). Using probabilistic models of document retrieval  without relevance
        information. Journal of documentation.
        Cui, H., Wen, J. R., Nie, J. Y., & Ma, W. Y. (2002, May). Probabilistic query expansion using query logs. In
        Proceedings of the 11th international conference on World Wide Web (pp. 325-332).
        Diaz, F., Mitra, B., & Craswell, N. (2016). Query expansion with locally-trained word embeddings. Proceedings
        of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin, Germany. 1 pp. 367–377.
        El, B. O. (2020). Document classification in information retrieval system based on neutrosophic sets. Filomat
        34(1): 89-97.
        El Mahdaouy, A., El Alaoui, S. O., & Gaussier, E. (2019). Word-embedding-based pseudo-relevance feedback
        for Arabic information retrieval. Journal of information science, 45(4), 429-442.
        Farhan, Y. H., Mohd, M., & Noah, S. A. M. (2020). Survey of Automatic Query Expansion for Arabic Text
        Retrieval. Journal of Information Science Theory and Practice, 8(4), 67-86.
        Farrar, D., & Hayes, J. H. (2019, May). A comparison of stemming techniques in tracing. In 2019 IEEE/ACM
        10th International Symposium on Software and Systems Traceability (SST) (pp. 37-44). IEEE.
        Fernández-Reyes, F. C., Hermosillo-Valadez, J., & Montes-y-Gómez, M. (2018). A prospect-guided global
        query expansion strategy using word embeddings. Information Processing & Management, 54(1), 1-13.
        Hammo, B., Sleit, A., & El-Haj, M. (2007). Effectiveness of query expansion in searching the Holy Quran. The
        Second International Conference on Arabic Language Processing Rabat, Morocco. pp. 1-10.
        Harris, Z. S. (1954). Distributional Structure. WORD 10(2-3): 146-162.
        Jiang, J. J., & Conrath, D. W. (1996). A Concept-Based Approach To Retrieval From An Electronic Industrial
        Directory. International Journal of Electronic Commerce 1(1): 51-72.
        Khafajeh, H., Yousef, N., & Kanaan, G. (2010, April). Automatic query expansion for Arabic text retrieval






        E- Proceedings of The 5th International Multi-Conference on Artificial Intelligence Technology (MCAIT 2021)   [194]
        Artificial Intelligence in the 4th Industrial Revolution
   203   204   205   206   207   208   209   210   211   212   213