Page 208 - The-5th-MCAIT2021-eProceeding
P. 208
incorporation from a space with a single dimension per term to a continuous vector space with a significantly
lower dimension (Diaz et al.,2016). The embedding models are normally trained in a broad corpus based on
term proximity. For instance, the goal of the Word2Vec model is to predict the next word(s), i.e., the context
window around the target word. This course aims to capture semantic and syntactic similarity between terms,
since similar words often share similar contexts. The primary objective of many IR approaches is to model
relevance (Saracevic,2016; Lavrenko & Croft,2017). In conclusion, the WE approaches seem to be more
promising way for AQE than the conventional approaches.
References
Abbache, A., Meziane, F., Belalem, G., & Belkredim, F. Z. (2018). Arabic query expansion using wordnet and
association rules. In Information retrieval and management: Concepts, methodologies, tools, and applications
(pp. 1239-1254). IGI Global.
Al-Chalabi, H., Ray, S., & Shaalan, K. (2015, April). Semantic based query expansion for Arabic question
answering systems. In 2015 First International Conference on Arabic Computational Linguistics (ACLing) (pp.
127-132). IEEE.
ALMasri, M., Berrut, C., & Chevallet, J. P. (2016, March). A comparison of deep learning based query
expansion with pseudo-relevance feedback and mutual information. In European conference on information
retrieval (pp. 709-715). Springer, Cham.
Atwan, J., Mohd, M., Rashaideh, H., & Kanaan, G. (2016). Semantically enhanced pseudo relevance feedback
for arabic information retrieval. Journal of Information Science, 42(2), 246-260.
Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval (Vol. 463). New York: ACM press.
Carpineto, C., & Romano, G. (2012). A survey of automatic query expansion in information retrieval. Acm
Computing Surveys (CSUR), 44(1), 1-50.
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language
processing (almost) from scratch. Journal of machine learning research, 12(ARTICLE), 2493-2537.
Croft, W. B., & Harper, D. J. (1979). Using probabilistic models of document retrieval without relevance
information. Journal of documentation.
Cui, H., Wen, J. R., Nie, J. Y., & Ma, W. Y. (2002, May). Probabilistic query expansion using query logs. In
Proceedings of the 11th international conference on World Wide Web (pp. 325-332).
Diaz, F., Mitra, B., & Craswell, N. (2016). Query expansion with locally-trained word embeddings. Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin, Germany. 1 pp. 367–377.
El, B. O. (2020). Document classification in information retrieval system based on neutrosophic sets. Filomat
34(1): 89-97.
El Mahdaouy, A., El Alaoui, S. O., & Gaussier, E. (2019). Word-embedding-based pseudo-relevance feedback
for Arabic information retrieval. Journal of information science, 45(4), 429-442.
Farhan, Y. H., Mohd, M., & Noah, S. A. M. (2020). Survey of Automatic Query Expansion for Arabic Text
Retrieval. Journal of Information Science Theory and Practice, 8(4), 67-86.
Farrar, D., & Hayes, J. H. (2019, May). A comparison of stemming techniques in tracing. In 2019 IEEE/ACM
10th International Symposium on Software and Systems Traceability (SST) (pp. 37-44). IEEE.
Fernández-Reyes, F. C., Hermosillo-Valadez, J., & Montes-y-Gómez, M. (2018). A prospect-guided global
query expansion strategy using word embeddings. Information Processing & Management, 54(1), 1-13.
Hammo, B., Sleit, A., & El-Haj, M. (2007). Effectiveness of query expansion in searching the Holy Quran. The
Second International Conference on Arabic Language Processing Rabat, Morocco. pp. 1-10.
Harris, Z. S. (1954). Distributional Structure. WORD 10(2-3): 146-162.
Jiang, J. J., & Conrath, D. W. (1996). A Concept-Based Approach To Retrieval From An Electronic Industrial
Directory. International Journal of Electronic Commerce 1(1): 51-72.
Khafajeh, H., Yousef, N., & Kanaan, G. (2010, April). Automatic query expansion for Arabic text retrieval
E- Proceedings of The 5th International Multi-Conference on Artificial Intelligence Technology (MCAIT 2021) [194]
Artificial Intelligence in the 4th Industrial Revolution