Page 144 - The-5th-MCAIT2021-eProceeding
P. 144

free food. The dashboard is successfully developed to display the sentiment analysis results. In addition, the
        search page in web system also able to help user to find the information on the halal status of a food or restaurant.
        Overall, this project is still lacking in many ways and is open for more improvement in the future.



        Acknowledgements
              The authors would like to express their gratitude towards Faculty of Computer and Mathematical Sciences
        for the research opportunity.


        References

        Ahmad, A. N., Ungku Zainal Abidin, U. F., Othman, M., & Abdul Rahman, R. (2018). Overview of the halal
        food control system in Malaysia. Food Control, 90, 352–363. https://doi.org/10.1016/j.foodcont.2018.02.035.
        Chen, Y., & Zhang, Z. (2018). Research on text sentiment analysis based on CNNs and SVM. Proceedings of
        the  13th  IEEE  Conference  on  Industrial  Electronics  and  Applications,  ICIEA  2018,  2731–2734.
        https://doi.org/10.1109/ICIEA.2018.8398173.
        Feizollah, A., Ainin, S., Anuar, N. B., Abdullah, N. A. B., & Hazim, M. (2019). Halal Products on Twitter:
        Data Extraction and Sentiment Analysis Using Stack of Deep Learning Algorithms. IEEE Access, 7, 83354–
        83362. https://doi.org/10.1109/ACCESS.2019.2923275.
        Hasan, A., Moin, S., Karim, A., & Shamshirband, S. (2018). Machine Learning-Based Sentiment Analysis for
        Twitter    Accounts.   Mathematical   and     Computational   Applications,   23(1),   11.
        https://doi.org/10.3390/mca23010011.
        Hassan, F. (2019). Sentiment Analysis: Analyzing Online Food Reviews for Best Dishes. 2018 (October 2018).
        Malaysia:   number   of   Twitter   users   2014-2019.   (2019).   Statista   Research   Department.
        https://www.statista.com/statistics/490591/twitter-users-malaysia/
        Mittal, A., & Patidar, S. (2019). Sentiment analysis on twitter data: A survey. ACM International Conference
        Proceeding Series, 91–95. https://doi.org/10.1145/3348445.3348466
        Nurrachmi, R. (2018). The Global Development of Halal Food Industry: A Survey. Tazkia Islamic Finance and
        Business Review, 11(1), 41–56. https://doi.org/10.30993/tifbr.v11i1.113
        Sarlan,  A.,  Nadam,  C.,  &  Basri,  S.  (2015).  Twitter  sentiment  analysis.  Conference  Proceedings  -  6th
        International Conference on Information Technology and Multimedia at UNITEN: Cultivating Creativity and
        Enabling  Technology  Through  the  Internet  of  Things,  ICIMU  2014,  November,  212–216.
        https://doi.org/10.1109/ICIMU.2014.7066632
        Sulaiman, M. Z. M., Noordin, N., Noor, N. L. M., Suhaimi, A. I. H., & Isa, W. A. R.  W. M. (2018). Halal
        inspection process at federal and state level: A case study of Halal Certification system in Malaysia. 2017 IEEE
        Conference on Open Systems, ICOS 2017, 2018-Janua, 65–70. https://doi.org/10.1109/ICOS.2017.8280276
        Tyagi, P., & Tripathi, R. C. (2019). A Review Towards the Sentiment Analysis Techniques for the Analysis of
        Twitter Data. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3368718


















        E- Proceedings of The 5th International Multi-Conference on Artificial Intelligence Technology (MCAIT 2021)   [131]
        Artificial Intelligence in the 4th Industrial Revolution
   139   140   141   142   143   144   145   146   147   148   149