Page 116 - The-5th-MCAIT2021-eProceeding
P. 116

parameters (Maia, Rocha and Rocha 2016). Regardless of these imperfections, FBA can determine the steady-
        state fluxes of organisms as it does not require the above-mentioned parameters that are difficult to obtain.


        References

        Budinich, M., Bourdon, J., Larhlimi, A., & Eveillard, D. (2017). A multi-objective constraint-based approach
        or modeling genome-scale microbial ecosystems. PloS one, 12(2), e0171744.
        Daud, K. M., Zakaria, Z., Shah, Z. A., Saberi, M., Mohamad, S. D., Omatu, S., & Corchado, J. M. (2018). A
        hybrid of Differential Search Algorithm and Flux Balance Analysis to Identify Knockout Strategies for in silico
        Optimization of Metabolites Production. Int. J. Advance Soft Compu. Appl, 10(2).
        Doshi, P., Shri, M., Bhargava, P., Joshi, C. G., & Joshi, M. (2020). Microbial Production of Industrial Proteins
        and Enzymes Using Metabolic Engineering. In Engineering of Microbial Biosynthetic Pathways (pp. 189-204).
        Springer, Singapore.
        Fong,  S.  S.,  &  Palsson,  B.  Ø.  (2004).  Metabolic  gene–deletion  strains  of  Escherichia  coli  evolve  to
        computationally predicted growth phenotypes. Nature genetics, 36(10), 1056-1058.
        Klamt, S., Müller, S., Regensburger, G., & Zanghellini, J. (2018). A mathematical framework for yield (vs.
        rate)  optimization  in  constraint-based  modeling  and  applications  in  metabolic  engineering. Metabolic
        engineering, 47, 153-169.
        Maia, P., Rocha, M., & Rocha, I. (2016). In silico constraint-based strain optimization methods: the quest for
        optimal cell factories. Microbiology and Molecular Biology Reviews, 80(1), 45-67.
        Suthers, P. F., Foster, C. J., Sarkar, D., Wang, L., & Maranas, C. D. (2020). Recent advances in constraint and
        machine learning-based metabolic modeling by leveraging stoichiometric balances, thermodynamic feasibility
        and kinetic law formalisms. Metabolic engineering, 63, 13-33.
        Stalidzans, E., Seiman, A., Peebo, K., Komasilovs, V., & Pentjuss, A. (2018). Model-based metabolism design:
        constraints for kinetic and stoichiometric models. Biochemical Society Transactions, 46(2), 261-267.
        Tomar, N., & De, R. K. (2013). Comparing methods for metabolic network analysis and an application to
        metabolic engineering. Gene, 521(1), 1-14.
        Vasilakou, E., Machado, D., Theorell, A., Rocha, I., Nöh, K., Oldiges, M., & Wahl, S. A. (2016). Current state
        and challenges for dynamic metabolic modeling. Current opinion in microbiology, 33, 97-104.







































        E- Proceedings of The 5th International Multi-Conference on Artificial Intelligence Technology (MCAIT 2021)   [103]
        Artificial Intelligence in the 4th Industrial Revolution
   111   112   113   114   115   116   117   118   119   120   121