Page 132 - The-5th-MCAIT2021-eProceeding
P. 132

Acknowledgements
               This research was supported by Universiti Kebangsaan Malaysia under research code [GGP-2020-041
        UKM].

        References
        Bagui, S., Nandi, D., Bagui, S., & White, R. J. (2019). Classifying Phishing Email Using Machine Learning
        and Deep Learning. 2019 International Conference on Cyber Security and Protection of Digital Services
        (Cyber Security). Published. https://doi.org/10.1109/cybersecpods.2019.8885143
        Birlea, M.C. (2020). Phishing Attacks: Detection and Prevention. ArXiv, abs/2004.01556.
        Dakpa, T., & Augustine, P. (2017). Study of Phishing Attacks and Preventions. International Journal of
        Computer Applications, 163(2), 5–8. https://doi.org/10.5120/ijca2017913461
        Das, S., Kim, A., Tingle, Z., & Nippert-Eng, C. (2019). All About Phishing: Exploring User Research through
        a Systematic Literature Review. ArXiv, abs/1908.05897.
        El Aassal, A., Baki, S., Das, A., & Verma, R. M. (2020). An In-Depth Benchmarking and Evaluation of Phishing
        Detection    Research   for    Security   Needs.    IEEE     Access,   8,    22170–22192.
        https://doi.org/10.1109/access.2020.2969780
        Fang, Y., Zhang, C., Huang, C., Liu, L., & Yang, Y. (2019). Phishing Email Detection Using Improved RCNN
        Model With Multilevel Vectors and Attention Mechanism. IEEE Access, 7, 56329–56340.
        https://doi.org/10.1109/access.2019.2913705
        Gomez Adorno, H. M., Rios, G., Posadas Durán, J. P., Sidorov, G., & Sierra, G. (2018). Stylometry-based
        Approach for Detecting Writing Style Changes in Literary Texts. Computación y Sistemas, 22(1).
        https://doi.org/10.13053/cys-22-1-2882
        Imaduddin, H., Widyawan, & Fauziati, S. (2019). Word Embedding Comparison for Indonesian Language
        Sentiment Analysis. 2019 International Conference of Artificial Intelligence and Information Technology
        (ICAIIT). Published. https://doi.org/10.1109/icaiit.2019.8834536
        Kumar, A., Chatterjee, J., & Díaz, V.G. (2020). A novel hybrid approach of SVM combined with NLP and
        probabilistic neural network for email phishing. International Journal of Electrical and Computer Engineering,
        10, 486-493.
        Kumar, S., Faizan, A., Viinikainen, A., & Hamalainen, T. (2018). MLSPD - Machine Learning Based Spam
        and Phishing Detection. Computational Data and Social Networks, 510–522. https://doi.org/10.1007/978-3
        030-04648-4_43
        Lagutina, K., Lagutina, N., Boychuk, E., & Paramonov, I. (2020). The Influence of Different Stylometric
        Features on the Classification of Prose by Centuries. 2020 27th Conference of Open Innovations Association
        (FRUCT). Published. https://doi.org/10.23919/fruct49677.2020.9211036
        Sharon Belvisi, N. M., Muhammad, N., & Alonso-Fernandez, F. (2020). Forensic Authorship Analysis of
        Microblogging Texts Using N-Grams and Stylometric Features. 2020 8th International Workshop on
        Biometrics and Forensics (IWBF). Published. https://doi.org/10.1109/iwbf49977.2020.9107953
        Xiujuan, W., Chenxi, Z., Kang-feng, Z., Haoyang, T., & Yuanrui, T. (2019). Detecting Spear-phishing Emails
        Based on Authentication. 2019 IEEE 4th International Conference on Computer and Communication Systems
        (ICCCS).

















        E- Proceedings of The 5th International Multi-Conference on Artificial Intelligence Technology (MCAIT 2021)   [119]
        Artificial Intelligence in the 4th Industrial Revolution
   127   128   129   130   131   132   133   134   135   136   137